Skip to main content Accessibility help
×
Home

Parallelisation of sparse grids for large scale data analysis

  • Jochen Garcke (a1) (a2), Markus Hegland (a2) and Ole Nielsen (a2)

Abstract

Sparse grids are the basis for efficient high dimensional approximation and have recently been applied successfully to predictive modelling. They are spanned by a collection of simpler function spaces represented by regular grids. The sparse grid combination technique prescribes how approximations on a collection of anisotropic grids can be combined to approximate high dimensional functions.

In this paper we study the parallelisation of fitting data onto a sparse grid. The computation can be done entirely by fitting partial models on a collection of regular grids. This allows parallelism over the collection of grids. In addition, each of the partial grid fits can be parallelised as well, both in the assembly phase, where parallelism is done over the data, and in the solution stage using traditional parallel solvers for the resulting PDEs. Using a simple timing model we confirm that the most effective methods are obtained when both types of parallelism are used.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Parallelisation of sparse grids for large scale data analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Parallelisation of sparse grids for large scale data analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Parallelisation of sparse grids for large scale data analysis
      Available formats
      ×

Copyright

References

Hide All
[1]Berry, M. J. A. and Linoff, G. S., Mastering Data Mining (Wiley, New York, 2000).
[2]Bishop, C. M., Neural Networks for Pattern Recognition (Oxford University Press, Oxford UK, 1995).
[3]Blackard, J. A., “Comparison of neural networks and discriminant analysis in predicting forest cover types”, Ph. D. Thesis, Department of Forest Sciences. Colorado State University, Fort Collins, Colorado, 1998.
[4]Blackford, L. S., Choi, J., Cleary, A., D'Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D. and Whaley, R. C., ScaLAPACK Users' Guide (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997).
[5]Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J., Classification and Regression Trees, Statistics/Probability Series (Wadsworth Publishing Company, Belmont, California, U.S.A., 1984).
[6]Bungartz, H.-J. and Griebel, M., “Sparse grids”, Acta Numer. 13 (2004) 1123.
[7]Friedman, J. H., “Multivariate adaptive regression splines”, Ann. Statist. 19 (1) (1991) 1141, With discussion and a rejoinder by the author.
[8]Garcke, J., “Maschinelles Lernen durch Funktionsrekonstruktion mit verallgemeinerten dünnen Gittern”, Ph. D. Thesis, Institut für Numerische Simulation, Universität Bonn, 2004.
[9]Garcke, J. and Griebel, M., “On the parallelization of the sparse grid approach for data mining”, in Large-Scale Scientific Computations, Third International Conference, Sozopol, Bulgaria (eds. Margenov, S., Wasniewski, J. and Yalamov, P.), Lecture Notes in Computer Science 2179, (Springer, Berlin, 2001), 2232.
[10]Garcke, J. and Griebel, M., “Classification with sparse grids using simplicial basis functions”, Intell. Data Anal. 6 (6) (2002) 483502, (shortened version appeared in KDD 2001, Proc. Seventh ACM SIGKDD, F. Provost and R. Srikant (eds.), pages 87–96, ACM, 2001).
[11]Garcke, J., Griebel, M. and Thess, M., “Data mining with sparse grids”, Computing 67 (3) (2001) 225253.
[12]Griebel, M., “A parallelizable and vectorizable multi-level algorithm on sparse grids”, in Parallel algorithms for partial differential equations (Kiel, 1990) (ed. Hackbusch, W.), Notes Numer. Fluid Mech. 31, (Vieweg, Braunschweig, 1991) 94100.
[13]Griebel, M., “The combination technique for the sparse grid solution of PDEs on multiprocessor machines”, Par. Proc. Lett. 2 (1992) 6170.
[14]Griebel, M., “A domain decomposition method using sparse grids”, in Domain decomposition methods in science and engineering (Como, 1992), Contemp. Math. 157 (American Mathematical Society, Providence, RI, 1994) 255261.
[15]Griebel, M., Huber, W., Störtkuhl, T. and Zenger, C., “On the parallel solution of 3D PDEs on a network of workstations and on vector computers”, in Parallel Computer Architectures: Theory, Hardware, Software, Applications (eds. Bode, A. and Dal Cin, M.), Lecture Notes in Computer Science 732, (Springer, Berlin, 1993), 276291.
[16]Griebel, M., Schneider, M. and Zenger, C., “A combination technique for the solution of sparse grid problems”, in Iterative Methods in Linear Algebra (eds. de Groen, P. and Beauwens, R.), (IMACS, Elsevier, North Holland, 1992), 263281.
[17]Hastie, T. and Tibshirani, R., “Generalized additive models”, Statist. Sci. 1 (1986) 297318, With discussion.
[18]Hastie, T. J. and Tibshirani, R. J., Generalized additive models, Monographs on Statistics and Applied Probability 43 (Chapman and Hall Ltd., London, 1990).
[19]Heckerman, D., “A tutorial on learning with Bayesian networks”, in Learning in graphical models (ed. Jordan, M. I.), (Kluwer, Dordrecht, Netherlands, 1998).
[20]Hegland, M., “Adaptive Sparse Grids”, ANZIAM J. 44 (E) (2003) C335–C353.
[21]Hegland, M., “Additive sparse grid fitting”, in Curve and surface fitting (Saint-Malo, 2002), Mod. Methods Math., (Nashboro Press, Brentwood, TN, 2003) 209218.
[22]Hegland, M., Nielsen, O. M. and Shen, Z., “Multidimensional smoothing using hyperbolic interpolatory wavelets”. Electronic Trans. Numer. Anal. 17 (2004) 168180.
[23]Vapnik, V. N., The Nature of Statistical Learning Theory, second ed. (Springer, New York, 2000).
[24]Wahba, G., Spline models for observational data, CBMS-NSF Regional Conference Series in Applied Mathematics 59 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990).
[25]Zenger, C., “Sparse grids”, in Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM-Seminar, Kiel, 1990 (ed. Hackbusch, W.), Notes on Num. Fluid Mech. 31 (Vieweg, Braunschweig, 1991) 241251.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Parallelisation of sparse grids for large scale data analysis

  • Jochen Garcke (a1) (a2), Markus Hegland (a2) and Ole Nielsen (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.