Hostname: page-component-5f7774ffb-bz8dm Total loading time: 0 Render date: 2026-02-20T07:26:49.013Z Has data issue: false hasContentIssue false

A PARALLELIZABLE LOSSLESS IMAGE COMPRESSION ALGORITHM FOR STANDARD AND PATHOLOGY IMAGES

Published online by Cambridge University Press:  23 January 2026

HONGFANG YUAN
Affiliation:
School of Mathematics, Sun Yat-sen University , Guangzhou, P. R. China; e-mail: yuanhf7@mail2.sysu.edu.cn, dengsh7@mail2.sysu.edu.cn, mcsyao@mail.sysu.edu.cn
SONGHAI DENG
Affiliation:
School of Mathematics, Sun Yat-sen University , Guangzhou, P. R. China; e-mail: yuanhf7@mail2.sysu.edu.cn, dengsh7@mail2.sysu.edu.cn, mcsyao@mail.sysu.edu.cn
XIANGKAI LIAN*
Affiliation:
College of Intelligence Science and Technology, National University of Defense Technology , Changsha, P. R. China
ZHENG’AN YAO
Affiliation:
School of Mathematics, Sun Yat-sen University , Guangzhou, P. R. China; e-mail: yuanhf7@mail2.sysu.edu.cn, dengsh7@mail2.sysu.edu.cn, mcsyao@mail.sysu.edu.cn

Abstract

This paper introduces a parallelizable lossless image compression algorithm designed for three-channel standard images and two-channel pathology images. The proposed algorithm builds on the Quite OK Image Format (QOI) by addressing its limitations in parallelizability and compression efficiency, thereby enhancing both the compression ratio and processing speed. By incorporating image context and optimizing pixel traversal sequences, the algorithm enables effective parallel processing, achieving rapid compression of million-pixel pathology images within milliseconds, and is scalable to larger whole-slide images. It also delivers exceptional performance in terms of both speed and compression ratio for standard images. Additionally, the low complexity lossless compression for images (LOCO-I) context prediction algorithm used in joint photographic experts group lossless standard (JPEG-LS) is parallelized to improve compression efficiency and speed. By implementing full-process parallelization across the entire compression workflow rather than confining parallelization to individual steps, this approach significantly enhances overall time performance.

Information

Type
Research Article
Copyright
© The Author(s), 2026. Published by Cambridge University Press on behalf of The Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Boutell, T., PNG (portable network graphics) specification version 1.0 (1997); https://www.rfc-editor.org/rfc/rfc2083.Google Scholar
de Cea-Dominguez, C., Moure, J. C., Bartrina-Rapesta, J. and Aulí-Llinàs, F., “Real-time 16k video coding on a GPU with complexity scalable BPC-PaCo”, Signal Process. Image Commun. 99 (2021) article ID: 116503; doi:10.1016/j.image.2021.116503.CrossRefGoogle Scholar
De Cea-Dominguez, C., Moure-Lopez, J. C., Bartrina-Rapesta, J. and Aulí-Llinàs, F., “GPU-oriented architecture for an end-to-end image/video codec based on JPEG2000”, IEEE Access 8 (2020) 6847468487; doi:10.1109/ACCESS.2020.2985859.CrossRefGoogle Scholar
Du, J., Zhou, C., Cao, N., Chen, G., Chen, Y., Cheng, Z., Song, L., Lu, G. and Zhang, W., “Large language model for lossless image compression with visual prompts”, Preprint, 2025, arXiv:2502.16163.Google Scholar
Huffman, D. A., “A method for the construction of minimum-redundancy codes”, Proc. IRE 40 (2007) 10981101; doi:10.1109/JRPROC.1952.273898.CrossRefGoogle Scholar
Li, D., Bai, Y., Wang, K., Jiang, J., Liu, X. and Gao, W., “CALLIC: content adaptive learning for lossless image compression”, in: Proceedings of the AAAI Conference on Artificial Intelligence, Volume 39 (eds T. Walsh, J. Shah and Z. Kolter) (AAAI Press, Philadelphia, PA, 2025) 46794688; doi:10.1609/aaai.v39i5.32494.Google Scholar
Li, Z., Huang, C., Wang, X., Hu, H., Wyeth, C., Bu, D., Yu, Q., Gao, W., Liu, X. and Li, M., “Lossless data compression by large models”, Nat. Mach. Intell. 7 (2025) 794799; doi:10.1038/s42256-025-01033-7.CrossRefGoogle Scholar
Liao, H. and Li, Y., “LFC-UNet: learned lossless medical image fast compression with U-Net”, PeerJ. Comput. Sci. 10 (2024) article ID: e1924; doi:10.7717/peerj-cs.1924.Google ScholarPubMed
Mao, Y., Wang, J., Guan, N. and Xue, C. J., “WISE: a framework for gigapixel whole-slide-image lossless compression”, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, 2025 (IEEE Computer Vision Foundation, 2025) 2934229351; doi:10.1109/CVPR52734.2025.02732.Google Scholar
Rahman, M. A. and Hamada, M., “Lossless image compression techniques: a state-of-the-art survey”, Symmetry 11 (2019) article ID: 1274; doi:10.3390/sym11101274.CrossRefGoogle Scholar
Rhee, H., Jang, Y. I., Kim, S. and Cho, N. I., “LC-FDNet: learned lossless image compression with frequency decomposition network”, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, 2022 (IEEE, 2022) 60336042; doi:10.1109/CVPR52688.2022.00594.CrossRefGoogle Scholar
Rissanen, J. J., “Generalized Kraft inequality and arithmetic coding”, IBM J. Res. Dev. 20 (1976) 198203; doi:10.1147/rd.203.0198.CrossRefGoogle Scholar
Schiopu, I. and Munteanu, A., “Deep-learning-based lossless image coding”, IEEE Trans. Circuits Syst. Video Technol. 30 (2020) 18291842; doi:10.1109/TCSVT.2019.2909821.Google Scholar
Shi, Z., Ma, W., Wu, G., Du, Y., Xia, M. and Li, Z., “Design of tile-based ARGB image lossless compressor and decompressor”, in: 2023 IEEE 17th International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, China, 2023 (IEEE, 2023) 5761; doi:10.1109/ASID60355.2023.10426160.CrossRefGoogle Scholar
Skodras, A., Christopoulos, C. and Ebrahimi, T., “The JPEG 2000 still image compression standard”, IEEE Signal Process. Mag. 18 (2002) 3658; doi: 10.1109/79.952804.CrossRefGoogle Scholar
Sneyers, J. and Wuille, P., “FLIF: free lossless image format based on MANIAC compression”, in: 2016 IEEE International Conference on Image Processing (ICIP 2016), Phoenix, AZ, 2016 (IEEE, 2016) 6670; doi:10.1109/ICIP.2016.7532320.Google Scholar
Szablewski, D., “QOI – the quite OK image format for fast, lossless compression” (2022); https://qoiformat.org/.Google Scholar
Taubman, D. S., Marcellin, M. W. and Rabbani, M., “JPEG2000: image compression fundamentals, standards and practice”, J. Electron. Imaging 11 (2002) 286287; doi:10.1117/1.1469618.CrossRefGoogle Scholar
Wallace, G. K., “The JPEG still picture compression standard”, Commun. ACM 34 (1991) 3044; doi: 10.1145/103085.103089.CrossRefGoogle Scholar
Weinberger, M. J., Seroussi, G. and Sapiro, G., “The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS”, IEEE Trans. Image Process. 9 (2000) 13091324; doi:10.1109/83.855427.CrossRefGoogle ScholarPubMed
Wu, X. and Memon, N., “CALIC – a context based adaptive lossless image codec”, in: 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, Atlanta, GA, 1996, Volume 4 (IEEE Computer Society, 1996) 18901893; doi:10.1109/ICASSP.1996.544819.Google Scholar
Wu, X. and Memon, N., “Context-based lossless interband compression-extending CALIC”, IEEE Trans. Image Process. 9 (2000) 9941001; doi:10.1109/83.846242.Google ScholarPubMed
Zhang, Z., Chen, Z. and Liu, S., “Fitted neural lossless image compression”, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, 2025 (IEEE Computer Vision Foundation, 2025) 2324923258; doi:10.1109/CVPR52734.2025.02165.CrossRefGoogle Scholar
Zheng, C., Ren, Z. and Li, D., “SEEC: segmentation-assisted multi-entropy models for learned lossless image compression”, Preprint, 2025, arXiv:2509.07704.Google Scholar