Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-29T07:05:43.128Z Has data issue: false hasContentIssue false

Solvability of generalized nonlinear symmetric variational inequalities

Published online by Cambridge University Press:  17 February 2009

S. Adly
Affiliation:
LACO, Université de Limoges, 123 avenue A. Thomas, 87060 Limoges Cedex, France.
W. Oettli
Affiliation:
Universität Mannheim, Lehrstuhl für Mathematik VII 68131 Mannheim, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper deals with the study of a general class of nonlinear variational inequalities. An existence result is given, and a perturbed iterative scheme is analyzed for solving such problems.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Adly, S., ‘A perturbed iterative method for a general class of variational inequalities’, Serdica Math. J. 22 (1996) 10011014.Google Scholar
[2]Attouch, H., Variational Convergence for Functions and Operators (Pitman, London, 1984).Google Scholar
[3]Auslender, A., ‘Numerical methods for non differentiable convex optimization’, Math. Programming Study 30 (1987) 102126.CrossRefGoogle Scholar
[4]Brézis, H., Opérateurs maximaux monotones (North-Holland, Amsterdam, 1973).Google Scholar
[5]Ekeland, I. and Temam, R., Convex Analysis and Variational Problems (North-Holland, Amsterdam, 1976).Google Scholar
[6]Fichera, G., ‘Problemi elastostatici con vincoli unilaterali:il problema di Signorini con ambigue condizioni al contorno’, Atti. Accad. Naz. Lincei Mem. Sez. I (8) 7 (1964) 71140.Google Scholar
[7]Gowda, M. S., ‘Complementarity problems over locally compact cones’, SIAM J. Control Optimization 27 (1989) 836841.CrossRefGoogle Scholar
[8]Lions, J. L. and Stampacchia, G., ‘Variational inequalities’, Comm. Pure Appl. Math. 20 (1967) 493519.Google Scholar
[9]Moreau, J. J., ‘La notion de sur-potentiel et les liaisons unilaterales en élastostatiques’, C. R. Acad. Sci. Paris Sér. A 267 (1968) 954957.Google Scholar
[10]Moudafi, A. and Théra, M., ‘Finding the zero for the sum of two maximal monotone operators’, J. Optimization Theory Appl., to appear.Google Scholar
[11]Noor, M. A., ‘Wiener-Hopf equations and variational inequalities’, J. Optimization Theory Appl. 79 (1993) 197206.Google Scholar
[12]Noor, M. A. and Oettli, W., ‘On general nonlinear complementarity problems and quasi-equilibria’, Le Matematiche 49 (1994) 313331.Google Scholar
[13]Oettli, W. and Yen, N. D., ‘Quasicomplementarity problems of type R 0’, J. Optimization Theory Appl. 89 (1996) 467474.CrossRefGoogle Scholar
[14]Ortega, J. M. and Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables (Academic Press, New York, 1970).Google Scholar
[15]Reinermann, J., ‘Über Fixpunkte kontrahierender Abbildungen und Schwach konvergente Toeplitz-Verfahren’, Arch. Math. 20 (1969) 5964.Google Scholar
[16]Shi, P., ‘Equivalence of variational inequalities with Wiener-Hopf equations’, Proc. Amer. Math. Soc. 111 (1991) 339346.Google Scholar
[17]Tseng, P., ‘Applications of a splitting algorithm to decomposition in convex programming and variational inequalities’, SIAM J. Control Optimization 29 (1991) 119138.Google Scholar