Hostname: page-component-594f858ff7-x2rdm Total loading time: 0 Render date: 2023-06-09T21:24:46.645Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "corePageComponentUseShareaholicInsteadOfAddThis": true, "coreDisableSocialShare": false, "useRatesEcommerce": true } hasContentIssue false

Common variance in amplitude envelope perception tasks and their impact on phoneme duration perception and reading and spelling in Finnish children with reading disabilities

Published online by Cambridge University Press:  01 July 2009

University of Jyväskylä
University of Jyväskylä
University of Jyväskylä
Harvard University
University of Jyväskylä
University of Jyväskylä
Aston University
University of Jyväskylä
University of Cambridge
University of Jyväskylä
ADDRESS FOR CORRESPONDENCE J. A. Hämäläinen, Department of Psychology, P.O. Box 35, Agora, University of Jyväskylä, Jyväskylä 40014, Finland. E-mail:


Our goal was to investigate auditory and speech perception abilities of children with and without reading disability (RD) and associations between auditory, speech perception, reading, and spelling skills. Participants were 9-year-old, Finnish-speaking children with RD (N = 30) and typically reading children (N = 30). Results showed significant group differences between the groups in phoneme duration discrimination but not in perception of amplitude modulation and rise time. Correlations among rise time discrimination, phoneme duration, and spelling accuracy were found for children with RD. Those children with poor rise time discrimination were also poor in phoneme duration discrimination and in spelling. Results suggest that auditory processing abilities could, at least in some children, affect speech perception skills, which in turn would lead to phonological processing deficits and dyslexia.

Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



Ahissar, M., Lubin, Y., Putter-Katz, H., & Banai, K. (2006). Dyslexia and the failure to form a perceptual anchor. Nature Neuroscience, 9, 15581564.CrossRefGoogle Scholar
Amitay, S., Ahissar, M., & Nelken, I. (2002). Auditory processing deficits in reading disabled adults. Journal of the Association for Research in Otolaryngology, 3, 302320.CrossRefGoogle ScholarPubMed
Bradley, L., & Bryant, P. (1983). Categorizing sounds and learning to read: A causal connection. Nature, 301, 419421.CrossRefGoogle Scholar
Brady, S. A., & Shankweiler, D. P. (1991). Phonological processes in literacy: A tribute to Isabelle Y. Liberman. Hillsdale, NJ: Erlbaum.Google Scholar
Curtin, S., Mintz, T. H., & Christiansen, M. H. (2005). Stress changes the representational landscape: Evidence from word segmentation. Cognition, 96, 233262.CrossRefGoogle ScholarPubMed
Drullman, R., Festen, J. M., & Plomp, R. (1994). Effect of temporal envelope smearing on speech reception. Journal of the Acoustical Society of America, 95, 10531064.CrossRefGoogle ScholarPubMed
Fowler, A. E. (1991). How early phonological development might set the stage for phoneme awareness. In Brady, S. & Shankweiler, D. P. (Eds.), Phonological processes in literacy: A tribute to Isabelle Y. Liberman (pp. 97118). Hillsdale, NJ: Erlbaum.Google Scholar
France, S. J., Rosner, B. S., Hansen, P. C., Calvin, C., Talcott, J. B., Richardson, A. J., et al. (2002). Auditory frequency discrimination in adult developmental dyslexics. Perception & Psychophysics, 64, 169179.CrossRefGoogle ScholarPubMed
Goswami, U., Thomson, J., Richardson, U., Stainthorp, R., Hughes, D., Rosen, S., et al. (2002). Amplitude envelope onsets and developmental dyslexia: A new hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 99, 1091110916.CrossRefGoogle ScholarPubMed
Grabe, E., & Low, E. L. (2002). Durational variability in speech and the rhythm class hypothesis. In Gussenhoven, C. & Warner, N. (Eds.), Laboratory phonology (Vol. 7, pp. 515546). Berlin: Mouton de Gruyter.Google Scholar
Guttorm, T. K., Leppänen, P. H. T., Poikkeus, A.-M., Eklund, K. M., Lyytinen, P., & Lyytinen, H. (2005). Brain event-related potentials (ERPs) measured at birth predict later language development in children with and without familial risk for dyslexia. Cortex, 41, 291303.CrossRefGoogle ScholarPubMed
Hulslander, J., Talcott, J., & Witton, C., DeFries, J., Pennington, B., Wadsworth, S., et al. (2004). Sensory processing, reading, IQ, and attention. Journal of Experimental Child Psychology, 88, 274295.CrossRefGoogle ScholarPubMed
Hämäläinen, J., Leppänen, P. H. T., Torppa, M., Muller, K., & Lyytinen, H. (2005). Detection of sound rise time by adults with dyslexia. Brain and Language, 94, 3242.CrossRefGoogle ScholarPubMed
Häyrinen, T., Serenius-Sirve, S., & Korkman, M. (1999). Lukilasse. Helsinki: Psykologien Kustannus Oy.Google Scholar
Jusczyk, P. W., Houston, D. M., & Newsome, M. (1999). The beginnings of word segmentation in English-learning infants. Cognitive Psychology, 39, 159207.CrossRefGoogle ScholarPubMed
Kaernbach, C. (1991). Simple adaptive testing with the weighted up–down method. Perception & Psychophysics, 49, 227229.CrossRefGoogle ScholarPubMed
Kuhl, P. K., Conboy, B. T., Padden, D., Nelson, T., & Pruitt, J. (2005). Early speech perception and later language development: Implications for the “critical period.” Language Learning and Development, 1, 237264.CrossRefGoogle Scholar
Leinonen, S., Muller, K., Leppänen, P. H. T., Aro, M., Ahonen, T., & Lyytinen, H. (2001). Heterogeneity in adult dyslexic readers: Relating processing skills to the speed and accuracy of oral text reading. Reading & Writing, 14, 265296.CrossRefGoogle Scholar
Leppänen, P. H. T., Pihko, E., Eklund, K. M., & Lyytinen, H. (1999). Cortical responses of infants with and without a genetic risk for dyslexia: II. Group effects. NeuroReport, 10, 969973.CrossRefGoogle ScholarPubMed
Leppänen, P. H. T., Richardson, U., Pihko, E., Eklund, K. M., Guttorm, T. K., Aro, M., et al. (2002). Brain responses to changes in speech sound durations differ between infants with and without familial risk for dyslexia. Developmental Neuropsychology, 22, 407422.CrossRefGoogle Scholar
Lorenzi, C., Dumont, A., & Fuellgrabe, C. (2000). Use of temporal envelope cues by children with developmental dyslexia. Journal of Speech, Language, and Hearing Research, 43, 13671379.CrossRefGoogle ScholarPubMed
Lyytinen, H., Ahonen, T., Eklund, K., Guttorm, T., Kulju, P., Laakso, M.-L., et al. (2004). Early development of children at familial risk for dyslexia—Follow-up from birth to school age. Dyslexia: An International Journal of Research & Practice, 10, 146178.CrossRefGoogle ScholarPubMed
Lyytinen, H., Leinonen, S., Nikula, M., Aro, M., & Leiwo, M. (1995). In search of the core features of dyslexia: Observations concerning dyslexia in the highly orthographically regular Finnish language. In Berninger, V. W. (Ed.), The varieties of orthographic knowledge: Vol. 2. Relationships to phonology, reading, and writing (pp. 177204). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
McAnally, K. I., & Stein, J. F. (1997). Scalp potentials evoked by amplitude-modulated tones in dyslexia. Journal of Speech, Language, and Hearing Research, 40, 939945.CrossRefGoogle ScholarPubMed
Menell, P., McAnally, K. I., & Stein, J. F. (1999). Psychophysical sensitivity and physiological response to amplitude modulation in adult dyslexic listeners. Journal of Speech, Language, and Hearing Research, 42, 797803.CrossRefGoogle Scholar
Muneaux, M., Ziegler, J. C., True, C., Thomson, J., & Goswami, U. (2004). Deficits in beat perception and dyslexia: Evidence from French. NeuroReport, 15, 12551259.CrossRefGoogle ScholarPubMed
Pasquini, E. S., Corriveau, K. H., & Goswami, U. (2007). Auditory processing of amplitude envelope rise time in adults diagnosed with developmental dyslexia. Scientific Studies of Reading, 11, 259286.CrossRefGoogle Scholar
Pierrehumbert, J. B. (2004). Phonetic diversity, statistical learning, and acquisition of phonology. Language and Speech, 46, 115154.CrossRefGoogle Scholar
Ramus, F. (2001). Outstanding questions about phonological processing in dyslexia. Dyslexia: The Journal of the British Dyslexia Association, 7, 197216.CrossRefGoogle ScholarPubMed
Ramus, F. (2003). Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13, 212218.CrossRefGoogle Scholar
Raven, J. C., Court, J. H., & Raven, J. (1992). Standard progressive matrices. Oxford: Oxford Psychologists Press.Google Scholar
Reed, M. A. (1989). Speech perception and the discrimination of brief auditory cues in reading disabled children. Journal of Experimental Child Psychology, 48, 270292.CrossRefGoogle ScholarPubMed
Richardson, U. (1998). Familial dyslexia and sound duration in the quantity distinctions of Finnish infants and adults. Jyväskylä, Finland: University of Jyväskylä.Google Scholar
Richardson, U., Leppänen, P. H. T., Leiwo, M., & Lyytinen, H. (2003). Speech perception of infants with high familial risk for dyslexia differ at the age of six months. Developmental Neuropsychology, 23, 385397.CrossRefGoogle Scholar
Richardson, U., Thomson, J. M., Scott, S. K., & Goswami, U. (2004). Auditory processing skills and phonological representation in dyslexic children. Dyslexia: An International Journal of Research & Practice, 10, 215233.CrossRefGoogle ScholarPubMed
Rocheron, I., Lorenzi, C., Fuellgrabe, C., & Dumont, A. (2002). Temporal envelope perception in dyslexic children. NeuroReport, 13, 16831687.CrossRefGoogle ScholarPubMed
Rosen, S. (2003). Auditory processing in dyslexia and specific language impairment: Is there a deficit? What is its nature? Does it explain anything? Journal of Phonetics, 31, 509527.CrossRefGoogle Scholar
Schulte-Körne, G., Deimel, W., Barling, J., & Remschmidt, H. (1998). Auditory processing and dyslexia: Evidence for a specific speech processing deficit. NeuroReport, 9, 337340.CrossRefGoogle ScholarPubMed
Shannon, R. V., Zeng, F. G., Kamath, V., Wygonski, J., & Ekelid, M. (1995). Speech recognition with primarily temporal cues. Science, 270, 303307.CrossRefGoogle ScholarPubMed
Stanovich, K. E. (1988). Explaining the differences between the dyslexic and the garden-variety poor reader: The phonological-core variable-difference model. Journal of Learning Disabilities, 21, 590612.CrossRefGoogle ScholarPubMed
Stuart, G. W., McAnally, K. I., McKay, A., Johnston, M., & Castles, A. (2006). A test of the magnocellular deficit theory of dyslexia in an adult sample. Cognitive Neuropsychology, 23, 12151229.CrossRefGoogle Scholar
Tallal, P. (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 2, 182198.CrossRefGoogle Scholar
Tallal, P. (2004). Improving language is a matter of time. Nature Reviews Neuroscience, 5, 721728.CrossRefGoogle Scholar
Tervaniemi, M., Jacobsen, T., Röttger, S., Kujala, T., Widmann, A., Vainio, M., et al. (2006). Selective tuning of cortical sound-feature processing by language experience. European Journal of Neuroscience, 23, 25382541.CrossRefGoogle ScholarPubMed
Thomson, J. M., Fryer, B., Maltby, J., & Goswami, U. (2006). Auditory and motor rhythm awareness in adults with dyslexia. Journal of Research in Reading, 29, 334348.CrossRefGoogle Scholar
Thomson, J. M., & Goswami, U. (2008). Rhythmic processing in children with developmental dyslexia: Auditory and motor rhythms link to reading and spelling. Journal of Physiology–Paris, 102, 120129.CrossRefGoogle ScholarPubMed
Tsao, F.-M., Liu, H.-M., & Kuhl, P. K. (2005). Speech perception in infancy predicts language development in the second year of life: A longitudinal study. Child Development, 75, 10671084.CrossRefGoogle Scholar
Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology & Psychiatry, 45, 240.CrossRefGoogle ScholarPubMed
Wagner, R. K., & Torgesen, J. K. (1987). The nature of phonological processing and its causal role in the acquisition of reading skills. Psychological Bulletin, 101, 192212.CrossRefGoogle Scholar
Wechsler, D. (1991). Wechsler Intelligence Scales for Children (3rd ed.). San Antonio, TX: Psychological Corporation.Google Scholar
Wiik, K. (1965). Finnish and English vowels. A comparison with special reference to the learning problems met by native speakers of Finnish learning English. Turku, Finland: University of Turku.Google Scholar
Witton, C., Stein, J. F., Stoodley, C. J., Rosner, B. S., & Talcott, J. B. (2002). Separate influences of acoustic AM and FM sensitivity on the phonological decoding skills of impaired and normal readers. Journal of Cognitive Neuroscience, 14, 866874.CrossRefGoogle ScholarPubMed