Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-jzjqj Total loading time: 0.502 Render date: 2022-08-16T11:34:03.853Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

ON SARMANOV MIXED ERLANG RISKS IN INSURANCE APPLICATIONS

Published online by Cambridge University Press:  07 October 2014

Enkelejd Hashorva
Affiliation:
Department of Actuarial Science, Faculty of Business and Economics, University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland E-Mail address: Enkelejd.Hashorva@unil.ch
Gildas Ratovomirija*
Affiliation:
Department of Actuarial Science, Faculty of Business and Economics, University of Lausanne, UNIL-Dorigny 1015 Lausanne, Switzerland

Abstract

In this paper we consider an extension to the aggregation of the FGM mixed Erlang risks, proposed by Cossette et al. (2013 Insurance: Mathematics and Economics, 52, 560–572), in which we introduce the Sarmanov distribution to model the dependence structure. For our framework, we demonstrate that the aggregated risk belongs to the class of Erlang mixtures. Following results from S. C. K. Lee and X. S. Lin (2010 North American Actuarial Journal, 14(1) 107–130), G. E. Willmot and X. S. Lin (2011 Applied Stochastic Models in Business and Industry, 27(1) 8–22), analytical expressions of the contribution of each individual risk to the economic capital for the entire portfolio are derived under both the TVaR and the covariance capital allocation principle. By analysing the commonly used dependence measures, we also show that the dependence structure is wide and flexible. Numerical examples and simulation studies illustrate the tractability of our approach.

Type
Research Article
Copyright
Copyright © ASTIN Bulletin 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bairamov, I., Kotz, S. and Bekç, M. (2001) New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics. Journal of Applied Statistics, 28 (5), 521536.CrossRefGoogle Scholar
Cossette, H., Côé, M.-P.,Marceau, E. and Moutanabbir, K. (2013) Multivariate distribution defined with Farlie-Gumbel-Morgenstern copula and mixed Erlang marginals: Aggregation and capital allocation. Insurance: Mathematics and Economics, 52, 560572.Google Scholar
Cossette, H., Mailhot, M. and Marceau, E. (2012) TVaR-based capital allocation for multivariate compound distributions with positive continuous claim amounts. Insurance: Mathematics and Economics, 50 (2), 247256.Google Scholar
Cummins, J.D. (2000) Allocation of capital in the insurance industry. Risk Management and Insurance Review, 3 (1)727.CrossRefGoogle Scholar
Denuit, M., Dhaene, J., Goovaerts, M. and Kaas, R. (2005) Actuarial Theory for Dependent Risks: Measures, Orders and Models, Wiley.CrossRefGoogle Scholar
Dhaene, J., Tsanakas, A., Valdez, E.A. and Vanduffel, S. (2012) Optimal capital allocation principles. Journal of Risk and Insurance, 79 (1), 128.CrossRefGoogle Scholar
Dickson, D.C.M. (2008) Some explicit solutions for the joint density of the time of ruin and the deficit at ruin. ASTIN Bulletin, 38 (1), 259276.CrossRefGoogle Scholar
Dickson, D.C.M. and Willmot, G.E. (2005) The density of the time to ruin in the classical poisson risk model. ASTIN Bulletin, 35 (1), 4560.CrossRefGoogle Scholar
Embrechts, P., Hashorva, E. and Mikosch, T. (2014) Aggregation of log-linear risks. Journal Applied Probability, in press.Google Scholar
Farlie, D.J.G. (1960) The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47, 307323.CrossRefGoogle Scholar
Gumbel, E.J. (1960) Bivariate exponential distributions. Journal of the American Statistical Association, 55, 698707.CrossRefGoogle Scholar
Hashorva, E. and Kortschak, D. (2014) Tail asymptotics of random sum and maximum of log-normal risks. Statistics Probability Letters, 87, 167174.CrossRefGoogle Scholar
Hashorva, E. and Li, J. (2015) Tail behaviour of weighted sums of order statistics of dependent risks. Stochastic Models, in press, 30 (1)–.Google Scholar
Hernández-Bastida, A. and Fernández-Sánchez, M.P. (2012) A sarmanov family with beta and gamma marginal distributions: an application to the Bayes premium in a collective risk model. Statistical Methods & Applications, 21 (4), 391409.CrossRefGoogle Scholar
Joe, H.Multivariate Models and Multivariate Dependence Concepts. (1997) Chapman & Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis.CrossRefGoogle Scholar
Klugman, S.A., Panjer, H.H. and Willmot, G.E. (2008) Loss models: From data to decisions, 3rd ed. Wiley Series in Probability and Statistics. Hoboken, NJ: John Wiley & Sons Inc.CrossRefGoogle Scholar
Lee, M.L.T. (1996) Properties and applications of the sarmanov family of bivariate distributions. Communications in Statistics-Theory and Methods, 25 (6), 12071222.Google Scholar
Lee, S.C.K. and Lin, X.S. (2010) Modeling and evaluating insurance losses via mixtures of Erlang distributions. North American Actuarial Journal, 14 (1), 107130.CrossRefGoogle Scholar
Lee, S.C.K. and Lin, X.S. (2012) Modeling dependent risks with multivariate Erlang mixtures. ASTIN Bulletin, 42 (1), 153180.Google Scholar
McNeil, A.J., Frey, R. and Embrechts, P. (2005) Quantitative risk management: Concepts, Techniques and Tools. Princeton Series in Finance. Princeton, NJ: Princeton University Press.Google Scholar
Morgenstern, D. (1956) Einfache Beispiele zweidimensionaler Verteilungen. Mitteilingsblatt für Mathematische Statistik, 8 234235.Google Scholar
Nelsen, R.B. (1999) An Introduction to Copulas, volume 139 of Lecture Notes in Statistics. New York: Springer-Verlag.CrossRefGoogle Scholar
Rosenblatt, M. (1952) Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23, 470472.CrossRefGoogle Scholar
Sarabia, J.M. and Gómez-Déniz, E. (2011) Multivariate Poisson-Beta distributions with applications. Communications in Statistics-Theory and Methods, 40 (6), 10931108.CrossRefGoogle Scholar
Sarmanov, O.V. (1966) Generalized normal correlation and two-dimensional Fréchet classes. Doklady Akademii Nauk SSSR, 168, 3235.Google Scholar
Tasche, D. Allocating portfolio economic capital to sub-portfolios. Economic Capital: A Practitioner's Guide, Risk Books, pages 275–302, 2004.Google Scholar
Willmot, G.E. and Lin, X.S. (2011) Risk modeling with the mixed Erlang distribution. Applied Stochastic Models in Business and Industry, 27 (1), 822.CrossRefGoogle Scholar
Willmot, G.E. and Woo, J.K. (2007) On the class of Erlang mixtures with risk theoretic applications. North American Actuarial Journal, 11 (2), 99115.CrossRefGoogle Scholar
Yang, Y. and Hashorva, E. (2013) Extremes and products of multivariate AC-product risks. Insurance: Mathematics and Economics, 52 (2), 312319.Google Scholar
Yang, Y. and Wang, Y. (2013) Tail behavior of the product of two dependent random variables with applications to risk theory. Extremes, 16 (1), 5574.CrossRefGoogle Scholar
17
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ON SARMANOV MIXED ERLANG RISKS IN INSURANCE APPLICATIONS
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

ON SARMANOV MIXED ERLANG RISKS IN INSURANCE APPLICATIONS
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

ON SARMANOV MIXED ERLANG RISKS IN INSURANCE APPLICATIONS
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *