Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T18:53:01.924Z Has data issue: false hasContentIssue false

Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots

Published online by Cambridge University Press:  16 September 2002

PAULA J. RUDALL
Affiliation:
Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK
RICHARD M. BATEMAN
Affiliation:
Department of Botany, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
Get access

Abstract

A gynostemium, comprising stamen filaments adnate to a syncarpous style, occurs in only three groups of monocots: the large family Orchidaceae (Asparagales) and two small genera Pauridia (Hypoxidaceae: Asparagales) and Corsia (Corsiaceae, probably in Liliales), all epigynous taxa. Pauridia has actinomorphic (polysymmetric) flowers, whereas those of Corsia and most orchids are strongly zygomorphic (monosymmetric) with a well-differentiated labellum. In Corsia the labellum is formed from the outer median tepal (sepal), whereas in orchids it is formed from the inner median tepal (petal) and is developmentally adaxial (but positionally abaxial in orchids with resupinate flowers). Furthermore, in orchids zygomorphy is also expressed in the stamen whorls, in contrast to Corsia. In Pauridia a complete stamen whorl is suppressed, but the ‘lost’ outer whorl is fused to the style. The evolution of adnation and zygomorphy are discussed in the context of the existing phylogenetic framework in monocotyledons. An arguably typological classification of floral terata is presented, focusing on three contrasting modes each of peloria and pseudopeloria. Dynamic evolutionary transitions in floral morphology are assigned to recently revised concepts of heterotopy (including homeosis) and heterochrony, seeking patterns that delimit developmental constraints and allow inferences regarding underlying genetic controls. Current evidence suggests that lateral heterotopy is more frequent than acropetal heterotopy, and that full basipetal heterotopy does not occur. Pseudopeloria is more likely to generate a radically altered yet functional perianth, but is also more likely to cause acropetal modification of the gynostemium. These comparisons indicate that there are at least two key genes or sets of genes controlling adnation, adaxial stamen suppression and labellum development in lilioid monocots; at least one is responsible for stamen adnation to the style (i.e. gynostemium formation), and another controls adaxial stamen suppression and adaxial labellum formation in orchids. Stamen adnation to the style may be a product of over-expression of the genes related to epigyny (i.e. a form of hyper-epigyny). If, as seems likely, stamen–style adnation preceded zygomorphy in orchid evolution, then the flowers of Pauridia may closely resemble those of the immediate ancestors of Orchidaceae, although existing molecular phylogenetic data indicate that a sister-group relationship is unlikely. The initial radiation in Orchidaceae can be attributed to the combination of hyper-epigyny, zygomorphy and resupination, but later radiations at lower taxonomic levels that generated the remarkable species richness of subfamilies Orchidoideae and Epidendroideae are more likely to reflect more subtle innovations that directly influence pollinator specificity, such as the development of stalked pollinaria and heavily marked and/or spur-bearing labella.

Type
Review Article
Copyright
Cambridge Philosophical Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)