Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-pgkvd Total loading time: 0.341 Render date: 2022-08-10T22:01:55.588Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Drivers of population change in common farmland birds in Germany

Published online by Cambridge University Press:  14 January 2020

MALTE BUSCH*
Affiliation:
Federation of German Avifaunists (DDA e.V.), An den Speichern 6, 48157 Münster, Germany.
JAKOB KATZENBERGER
Affiliation:
Federation of German Avifaunists (DDA e.V.), An den Speichern 6, 48157 Münster, Germany.
SVEN TRAUTMANN
Affiliation:
Federation of German Avifaunists (DDA e.V.), An den Speichern 6, 48157 Münster, Germany.
BETTINA GERLACH
Affiliation:
Federation of German Avifaunists (DDA e.V.), An den Speichern 6, 48157 Münster, Germany.
RAINER DRÖSCHMEISTER
Affiliation:
Federal Agency for Nature Conservation, Konstantinstrasse 110, 53179 Bonn, Germany.
CHRISTOPH SUDFELDT
Affiliation:
Federation of German Avifaunists (DDA e.V.), An den Speichern 6, 48157 Münster, Germany.
*
*Author for correspondence; email: busch@dda-web.de

Summary

Farmland bird populations in Germany are declining at a higher speed than species inhabiting other habitats. We studied potential causes for bird population changes based on data from standardised German breeding bird monitoring schemes. We related population trends to covariates describing the changes in the agricultural landscape in Germany, weather conditions during the breeding season and for some migratory species, conditions at stopover and wintering sites. Linear mixed effect models were used to analyse effect strength at species level and conclusions are drawn for the overall group of farmland bird species. The area of grassland and fallow land was shown to have the strongest positive effects and the area of maize and rapeseed the strongest negative effects on farmland bird population trends. The results obtained also indicate that despite the consistent influence of weather conditions during the breeding season, land-use changes had a stronger impact on bird populations than weather. Conditions at Sahel wintering sites did not show a consistent effect on population trends. Based on these findings the study quantitatively underpins and ranks key factors shaping farmland bird populations in Germany.

Type
Research Article
Copyright
© BirdLife International, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achtziger, R., Stickroth, H. and Zieschank, R. (2004) Nachhaltigkeitsindikator für die Artenvielfalt—ein Indikator für den Zustand von Natur und Landschaft in Deutschland. Angew Landschaftsökol. 63: 1137.Google Scholar
Assandri, G., Bogliani, G., Pedrini, P. and Brambilla, M. (2019) Toward the next Common Agricultural Policy reform: Determinants of avian communities in hay meadows reveal current policy’s inadequacy for biodiversity conservation in grassland ecosystems. J. Appl. Ecol. 56: 604617.CrossRefGoogle Scholar
Aunins, A. and Priednieks, J. (2008) Ten years of farmland bird monitoring in Latvia: population changes 1995-2004. Revista catalana d’ornitologia 24: 5364.Google Scholar
Barton, K. (2016) MuMIn: Multi-Model Inference. https://cran.r-project.org/package=MuMIn. Accessed 13.07.2017.Google Scholar
Bates, D., Maechler, M., Bolker, B. and Walker, S. (2015) Fitting Linear Mixed-Effects Models using lme4. J. Stat. Softw. 67: 148.CrossRefGoogle Scholar
Benton, T. G., Vickery, J. A. , and Wilson, J. D. (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18: 182188.CrossRefGoogle Scholar
Benzler, A. (2012) Measuring extent and quality of HNV farmland in Germany. Pp 507510 in Oppermann, R., Beaufoy, G. and Jones, G., eds. High Nature Value Farming in Europe. Ubstadt-Weiher: Verlag Regionalkultur.Google Scholar
Benzler, A., Fuchs, D. and Huenig, C. (2015) Methodik und erste Ergebnisse des Monitorings der Landwirtschaftsflächen mit hohem Naturwert in Deutschland. Natur und Landschaft 90: 309316.Google Scholar
BfN (Federal Agency for Nature Conservation) (2014) Grünland-Report. Alles im Grünen Bereich? Bonn-Bad Godesberg: Federal Agency for Nature Conservation. https://www.bfn.de/fileadmin/MDB/documents/presse/2014/PK_Gruenlandpapier_30.06.2014_final_layout_barrierefrei.pdf. Accessed 23.08.2017.Google Scholar
BfN (Federal Agency for Nature Conservation) (2017) Agrar-Report 2017. Biologische Vielfalt in der Agrarlandschaft. Bonn-Bad Godesberg: Federal Agency for Nature Conservation. http://www.bfn.de/fileadmin/BfN/landwirtschaft/Dokumente/BfN-Agrar-Report_2017.pdf. Accessed 23.08.2017.Google Scholar
BirdLife International (2018) State of the world’s birds: taking the pulse of the planet. Cambridge, UK: BirdLife International.Google Scholar
Boano, G. I., Bonardi, A. N. and Silvano, F. A. (2004) Nightingale Luscinia megarhynchos survival rates in relation to Sahel rainfall. Avocetta 28: 7785.Google Scholar
Both, C., Bouwhuis, S., Lessells, C. M. and Visser, M. E. (2006) Climate change and population declines in a long-distance migratory bird. Nature 441(7089): 8183.CrossRefGoogle Scholar
Bowler, D. E., Heldbjerg, H., Fox, A. D., O’Hara, R. B. and Böhning‐Gaese, K. (2018) Disentangling the effects of multiple environmental drivers on population changes within communities. J. Anim. Ecol. 87: 10341045.CrossRefGoogle ScholarPubMed
Burnham, K. P. and Anderson, D. R. (2002) Model selection and multi-model inference: A practical information-theoretic approach. 2nd edition. New York: Springer.Google Scholar
Burns, F., Eaton, M. A., Barlow, K. E., Beckmann, B. C., Brereton, T., Brooks, D. R., Brown, P. M., Al Fulaij, N., Gent, T., Henderson, I. and Noble, D. G. (2016) Agricultural management and climatic change are the major drivers of biodiversity change in the UK. PLoS One 11(3): p.e0151595.CrossRefGoogle ScholarPubMed
Butchart, S. H., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J. P., Almond, R. E., Baillie, J. E., Bomhard, B., Brown, C., Bruno, J. and Carpenter, K. E. (2010) Global biodiversity: indicators of recent declines. Science 328(5982): 11641168.CrossRefGoogle ScholarPubMed
Butler, S. J., Boccaccio, L., Gregory, R. D., Vorisek, P. and Norris, K. (2010) Quantifying the impact of land-use change to European farmland bird populations. Agr. Ecosyst. Environ. 137: 348357.CrossRefGoogle Scholar
BVL (Bundesamt für Verbraucherschutz und Lebensmittelsicherheit) (2014) Handbuch Pflanzenschutz-Kontrollprogramm. Bund-Länder-Programm zur Überwachung des Inverkehrbringens und der Anwendung von Pflanzenschutzmitteln nach dem Pflanzenschutzgesetz (Stand: April 2014). Braunschweig: Arbeitsgemeinschaft Pflanzenschutzmittelkontrolle (AG PMK).Google Scholar
Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. and Shrubb, M. (2000) Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37: 771788.CrossRefGoogle Scholar
Chen, J., Franklin, J. F. and Lowe, J. S. (1996) Comparison of abiotic and structurally defined patch patterns in a hypothetical forest landscape. Conserv. Biol. 10: 854862.CrossRefGoogle Scholar
Culp, L. A., Cohen, E., Scarpignato, A., Thogmartin, W. and Marra, P. (2017) Full annual cycle climate change vulnerability assessment for migratory birds. Ecosphere 8(3): e01565.CrossRefGoogle Scholar
DDA and DO-G (2011) Positionspapier zur aktuellen Bestandssituation der Vögel der Agrarlandschaft. http://www.dda-web.de/downloads/texts/positionspapier_agrarvoegel_dda_dog.pdf. Accessed 16.06.2017.Google Scholar
DO-G Fachgruppe Agrarvögel (2012) Positionspapier „Ökologische Vorrangflächen“. http://www.do-g.de/fileadmin/do-g_dokumente/Positionspapier_OeVF_der_DO-G_FG_Voegel_der_Agrarlandschaft_19-11-2012.pdf. Accessed 08.05.2018.Google Scholar
Donald, P. F., Green, R. E. and Heath, M. F. (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268: 2529.CrossRefGoogle Scholar
Donald, P. F., Pisano, G., Rayment, M. D. and Pain, D. J. (2002) The Common Agricultural Policy, EU enlargement and the conservation of Europe’s farmland birds. Agric. Ecosyst. Environ. 89: 167182.CrossRefGoogle Scholar
Donald, P. F. and Morris, T. J. (2005) Saving the Skylark. Br. Birds 98: 570578.Google Scholar
Donald, P. F., Sanderson, F. J., Burfield, I. J. and van Bommel, F. P. J. (2006) Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agr. Ecosyst. Environ. 116: 189196.CrossRefGoogle Scholar
Dougall, T. W. (1996) Movement and mortality of British‐ringed Skylarks Alauda arvensis. Ringing and Migration 17: 8192.CrossRefGoogle Scholar
Eglington, S. M. and Pearce-Higgins, J. W. (2012) Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. PloS One, 7(3): p.e30407.CrossRefGoogle ScholarPubMed
Evans, K. L. (2004) The potential for interactions between predation and habitat change to cause population declines of farmland birds. Ibis 146: 113.CrossRefGoogle Scholar
Federal Statistical Office (2009) Statistisches Jahrbuch 2009 für die Bundesrepublik Deutschland. Wiesbaden: Statistisches Bundesamt.Google Scholar
Federal Statistical Office (2011) Statistisches Jahrbuch 2009 für die Bundesrepublik Deutschland mit »Internationalen Übersichten«. Wiesbaden: Statistisches Bundesamt.Google Scholar
Flade, M. (2012) Von der Energiewende zum Biodiversitäts-Desaster – zur Lage des Vogelschutzes in Deutschland. Vogelwelt 133: 149158.Google Scholar
Flade, M. and Schwarz, J. (2004) Ergebnisse des DDA-Monitoringprogramms, Teil II: Bestandsentwicklung von Waldvögeln in Deutschland. Vogelwelt 125: 177213.Google Scholar
Gamero, A., Brotons, L., Brunner, A., Foppen, R., Fornasari, L., Gregory, R. D., Herrando, S., Hořák, D., Jiguet, F., Kmecl, P., Lehikoinen, A., Lindström, Å., Paquet, J., Reif, J., Sirkiä, P. M., Škorpilová, J., van Strien, A., Szép, T., Telenský, T., Teufelbauer, N., Trautmann, S., van Turnhout, C. A. M., Vermouzek, Z., Vikstrøm, T.and Voříšek, P. (2017) Tracking progress toward EU biodiversity strategy targets: EU policy effects in preserving its common farmland birds. Conserv. Lett. doi:10.1111/conl.12292CrossRefGoogle Scholar
Gil-Tena, A., De Cáceres, M., Ernoult, A., Butet, A., Brotons, L. and Burel, F. (2015) Agricultural landscape composition as a driver of farmland bird diversity in Brittany (NW France). Agric. Ecosyst. Environ. 205: 7989.CrossRefGoogle Scholar
Gregory, R. D., Van Strien, A., Vorisek, P., Meyling, A. W. G., Noble, D. G., Foppen, R. P. and Gibbons, D. W. (2005) Developing indicators for European birds. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 360(1454): 269288.CrossRefGoogle ScholarPubMed
Gregory, R. D., Skorpilova, J., Vorisek, P. and Butler, S. (2019) An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 103: 676687.CrossRefGoogle Scholar
Grueber, C. E., Nakagawa, S., Laws, R. J. and Jamieson, I. G. (2011) Multimodel inference in ecology and evolution: Challenges and solutions. J. Evol. Biol. 24: 699711.CrossRefGoogle ScholarPubMed
Grüneberg, C., Bauer, H.-G., Haupt, H., Hüppop, O., Ryslavy, T. and Südbeck, P. (2015) Rote Liste der Brutvögel Deutschlands. 5. Fassung, 30. November 2015. Ber. Vogelschutz 52: 1967.Google Scholar
Grüneberg, C., Dröschmeister, R., Fuchs, D., Frederking, W., Gerlach, B., Hauswirth, M., Karthäuser, J., Schuster, B., Sudfeldt, C., Trautmann, S. and Wahl, J. (2017) Vogelschutzbericht 2013: Methoden, Organisation und Ergebnisse. Naturschutz und Biologische Vielfalt 157. Bonn-Bad Godesberg: Federal Agency for Nature Conservation.Google Scholar
Hallmann, C. A., Foppen, R. P., van Turnhout, C. A., de Kroon, H. and Jongejans, E. (2014) Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511(7509): 341343.CrossRefGoogle ScholarPubMed
Heldbjerg, H., Sunde, P. and Fox, A. D. (2018) Continuous population declines for specialist farmland birds 1987-2014 in Denmark indicates no halt in biodiversity loss in agricultural habitats. Bird Conserv. Internatn. 28: 278291.CrossRefGoogle Scholar
Henderson, I. G. and Evans, A. D. (2000) Responses of farmland birds to set-aside and its management. Pp. 6976 in Aebischer, N. J., Evans, A. D., Grice, P. V. and Vickery, J. A., eds. Ecology and conservation of lowland farmland birds. Hertfordshire, UK: British Ornithologists’ Union.Google Scholar
Hendriks, K., Stobbelaar, D. J. and Van Mansvelt, J. D. (2000) The appearance of agriculture: An assessment of the quality of landscape of both organic and conventional horticultural farms in West Friesland. Agric. Ecosyst. Environ. 77: 157175.CrossRefGoogle Scholar
Hirschfeld, A. and Attard, G. (2017) Vogeljagd in Europa – Analyse von Abschusszahlen und Auswirkungen der Jagd auf den Erhalt bedrohter Arten. Ber. Vogelschutz 53/54: 1542.Google Scholar
Jaeger, B. (2016) r2glmm: Computes R Squared for Mixed (Multilevel) Models. https://github.com/bcjaeger/r2glmm. Accessed 09.05.2017.Google Scholar
Jerrentrup, J. S., Dauber, J., Strohbach, M. W., Mecke, S., Mitschke, A., Ludwig, J. and Klimek, S. (2017) Impact of recent changes in agricultural land use on farmland bird trends. Agric. Ecosyst. Environ. 239: 334341.CrossRefGoogle Scholar
Kleijn, D. and van Zuijlen, G. J. (2004) The conservation effects of meadow bird agreements on farmland in Zeeland, The Netherlands, in the period 1989–1995. Biol. Conserv. 117: 443451.CrossRefGoogle Scholar
Lemoine, N. and Bohning-Gaese, K. (2003) Potential impact of global climate change on species richness of long-distance migrants. Conserv. Biol. 17: 577586.CrossRefGoogle Scholar
Machado, S., Bynum, E. D., Archer, T. L., Lascano, R. J., Wilson, L. T., Bordovsky, J., Segarra, E., Bronson, K., Nesmith, D. M. and Xu, W. (2000) Spatial and temporal variability of corn grain yield: Site-specific relationships of biotic and abiotic factors. Precis. Agric. 2: 359376.CrossRefGoogle Scholar
McCulloch, M. N., Tucker, G. M. and Baillie, S. R. (1992) The hunting of migratory birds in Europe: a ringing recovery analysis. Ibis 134(s1): 5565.CrossRefGoogle Scholar
Milsom, T. P., Langton, S. D., Parkin, W. K., Peel, S., Bishop, J. D., Hart, J. D. and Moore, N. P. (2000) Habitat models of bird species’ distribution: an aid to the management of coastal grazing marshes. J. Appl. Ecol. 37: 706727.CrossRefGoogle Scholar
Mitschke, A., Sudfeldt, C., Heidrich-Riske, H. and Dröschmeister, R. (2005) Brutvogelmonitoring in der Normallandschaft Deutschlands – Untersuchungsgebiete, Erfassungsmethode und erste Ergebnisse. Vogelwelt 126: 127140.Google Scholar
Morrison, C. A., Robinson, R. A., Clark, J. A., Risely, K. and Gill, J. A. (2013) Recent population declines in Afro‐Palaearctic migratory birds: the influence of breeding and non‐breeding seasons. Divers. Distrib. 19: 10511058.CrossRefGoogle Scholar
NABU (Nature and Biodiversity Conservation Union) (2009) NABU-Position Grünlandschutz. https://www.nabu.de/imperia/md/content/nabude/landwirtschaft/gruenland/nabu-position_gruenlandschutz_0306.pdf. Accessed 23.08.2017.Google Scholar
Nakagawa, S. and Schielzeth, H. (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4: 133142.CrossRefGoogle Scholar
Newton, I. (2004) The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. Ibis 146: 579600.CrossRefGoogle Scholar
Nitsch, H., Osterburg, B., Roggendorf, W. and Laggner, B. (2012) Cross compliance and the protection of grassland–Illustrative analyses of land use transitions between permanent grassland and arable land in German regions. Land Use Policy 29: 440448.CrossRefGoogle Scholar
Oppermann, R., Kasperczyk, N., Matzdorf, B., Reuter, M., Meyer, C., Luick, R., Stein, S., Ameskamp, K., Gelhausen, J. and Bleil, R. (2013) Reform der Gemeinsamen Agrarpolitik (GAP) 2013 und Erreichung der Biodiversitäts- und Umweltziele. Naturschutz und Biologische Vielfalt 135. Bonn-Bad Godesberg: Federal Agency for Nature Conservation.Google Scholar
Oppermann, R., Fried, A.Lepp, N., Lepp, T. and Lakner, S. (2016) Fit, fair und nachhaltig. Vorschläge für eine neue EU-Agrarpolitik. Eine Studie im Auftrag des NABU Bundesverbands. Mannheim, Göttingen: Institut für Agrarökologie und Biodiversität, Ingenieurbüro für Naturschutz und Agrarökonomie https://www.nabu.de/imperia/md/content/nabude/landwirtschaft/agrarreform/161104-studie-neueeuagrarpolitik-langfassung.pdf. Accessed 12.08.2017.Google Scholar
Osterburg, B., Nitsch, H., Laggner, B. and Roggendorf, W. (2009) Auswertung von Daten des Integrierten Verwaltungs- und Kontrollsystems zur Abschätzung der EU-Agrarreform auf Umwelt und Landschaft: Bericht für das F+E-Vorhaben ’Naturschutzfachliche Bewertung der GAP-Effizienzsteigerung durch Nutzung bestehender Datenbestände’, gefördert durch das Bundesamt für Naturschutz (BfN) mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Arbeitsberichte aus der vTI-Agrarökonomie, No. 07/2009.Google Scholar
Pannekoek, J. and van Strien, A. (2005) TRIM 3 Manual (Trends and indices for monitoring data). https://www.cbs.nl/en-gb/society/nature-and-environment/indices-and-trends--trim--. Accessed 07.04.2017.Google Scholar
Pe’er, G. , Dicks, L. V., Visconti, P., Arlettaz, R., Baldi, A., Benton, T. G., Collins, S., Dieterich, M., Gregory, R. D., Hartig, F., Henle, K., Hobson, P. R., Kleijn, D., Neumann, R. K., Robijns, T., Schmidt, J., Shwartz, A., Sutherland, W. J., Turbe, A. and Scott, A. V. (2014) EU agricultural reform fails on biodiversity. Science 344(6188): 10901092.CrossRefGoogle ScholarPubMed
Przybylo, R., Sheldon, B. C. and Merilä, J. (2000) Climatic effects on breeding and morphology: evidence for phenotypic plasticity. J. Anim. Ecol. 69: 395403.CrossRefGoogle Scholar
R Core Team (2017) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.r-project.org. Accessed 03.02.2016.Google Scholar
Reif, J. (2013) Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithol. 48: 116.CrossRefGoogle Scholar
Reif, J. and Hanzelka, J. (2016) Grassland winners and arable land losers: The effects of post-totalitarian land use changes on long-term population trends of farmland birds. Agric. Ecosyst. Environ. 232: 208217.CrossRefGoogle Scholar
Reif, J. and Vermouzek, Z. (2018) Collapse of farmland bird populations in an Eastern European country following ist EU accession. Conserv. Lett. e12586.Google Scholar
Rösler, S. and Weins, C. (1996) Aktuelle Entwicklungen in der Landwirtschaftspolitik und ihre Auswirkungen auf die Vogelwelt. Vogelwelt 117: 169185.Google Scholar
Saino, N., Ambrosini, R., Rubolini, D., von Hardenberg, J., Provenzale, A., Hüppop, K., Hüppop, O., Lehikoinen, A., Lehikoinen, E., Rainio, K. and Romano, M. (2011) Climate warming, ecological mismatch at arrival and population decline in migratory birds. Proc. R. Soc. Lond. Ser. B Biol. Sci. 278(1707): 835842.CrossRefGoogle ScholarPubMed
Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. and Van Bommel, F. P. (2006) Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131: 93105.CrossRefGoogle Scholar
Sanderson, F. J., Kloch, A., Sachanowicz, K. and Donald, P. F. (2009) Predicting the effects of agricultural change on farmland bird populations in Poland. Agric. Ecosyst. Environ. 129: 3742.CrossRefGoogle Scholar
Sauerbrei, R., Ekschmitt, K., Wolters, V. and Gottschalk, T. K. (2014) Increased energy maize production reduces farmland bird diversity. Gcb Bioenergy 6: 265274.CrossRefGoogle Scholar
Schielzeth, H. (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1: 103113.CrossRefGoogle Scholar
Schwarz, J. and Flade, M. (2000) Ergebnisse des DDA-Monitoringprogramms. Teil I: Bestandsänderungen von Vogelarten der Siedlungen seit 1989. Vogelwelt 121: 87106.Google Scholar
Şekercioğlu, Ç. H., Daily, G. C. and Ehrlich, P. R. (2004) Ecosystem consequences of bird declines. Proc. Natl. Acad. Sci. U.S.A. 101: 1804218047.CrossRefGoogle ScholarPubMed
Stephens, P. A., Mason, L. R., Green, R. E., Gregory, R. D., Sauer, J. R., Alison, J. and Willis, S. G. (2016) Consistent response of bird populations to climate change on two continents. Science 352: 8487.CrossRefGoogle ScholarPubMed
Strebel, G., Jacot, A., Horch, P. and Spaar, R. (2015) Effects of grassland intensification on Whinchats Saxicola rubetra and implications for conservation in upland habitats. Ibis 157: 250259.CrossRefGoogle Scholar
Sudfeldt, C., Dröschmeister, R., Flade, M., Grüneberg, C., Mitschke, A., Schwarz, J. and Wahl, J. (2009) Vögel in Deutschland – 2009. Münster: DDA, BfN, LAG VSW.Google Scholar
Sudfeldt, C., Dröschmeister, R., Wahl, J., Berlin, K., Gottschalk, T., Grüneberg, C., Mitschke, A. and Trautmann, S. (2012) Vogelmonitoring in Deutschland. Programme und Anwendungen. Naturschutz und Biologische Vielfalt 119. Bonn-Bad Godesberg: Federal Agency for Nature Conservation.Google Scholar
Sudfeldt, C., Dröschmeister, R., Frederking, W., Gedeon, K., Gerlach, B., Grüneberg, C., Karthäuser, J., Langgemach, T., Schuster, B., Trautmann, S. and Wahl, J. (2013) Vögel in Deutschland – 2013. Münster: DDA, BfN, LAG VSW.Google Scholar
Szep, T. (1995) Relationship between west African rainfall and the survival of central European Sand Martins Riparia riparia. Ibis 137: 162168.CrossRefGoogle Scholar
Traba, J. and Morales, M. B. (2019) The decline of farmland birds in Spain is strongly associated to the loss of fallowland. Sci. Rep. 9: 9473.CrossRefGoogle Scholar
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. and Thies, C. (2005) Landscapeperspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8: 857874.CrossRefGoogle Scholar
Verhulst, J., Baldi, A. and Kleijn, D. (2004) Relationship between land-use intensity andspecies richness and abundance of birds in Hungary. Agric. Ecosyst. Environ. 104: 465473.CrossRefGoogle Scholar
Wahl, J., Dröschmeister, R., Gerlach, B., Grüneberg, C., Langgemach, T., Trautmann, S. and Sudfeldt, C. (2015) Vögel in Deutschland – 2014. Münster: DDA, BfN, LAG VSW.Google Scholar
Wahl, J., König, C., Grüneberg, C. and Trautmann, S. (2014) Entwicklung, Charakterisierung und Abstimmung von ökologischen Gruppen von Vogelarten. Unveröffentlichter Abschlussbericht zum gleichnamigen Projekt im Auftrag des BfN. Münster: Dachverband Deutscher Avifaunisten.Google Scholar
Yalden, D. W. and Pearce-Higgins, J. W. (1997) Density-dependence and winter weather as factors affecting the size of a population of Golden Plovers Pluvialis apricaria. Bird Study 44: 227234.CrossRefGoogle Scholar
Yong, W. and Moore, F. R. (1997) Spring stopover of intercontinental migratory thrushes along the northern coast of the Gulf of Mexico. The Auk 114: 263278.CrossRefGoogle Scholar
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. and Smith, G. M. (2009) Mixed effects models and extensions in ecology with R. New York: Springer.CrossRefGoogle Scholar
Zuur, A. F., Ieno, E. N. and Elphick, C. S. (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1: 314.CrossRefGoogle Scholar
Zwarts, L., Bijlsma, R. G., van der Kamp, J. and Wymenga, E. (2012) Living on the edge. http://booksandjournals.brillonline.com/content/books/9789004278134. Accessed 16.10.2017.CrossRefGoogle Scholar
Supplementary material: File

Busch et al. supplementary material

Tables S1-S3 and Figures S1-S4

Download Busch et al. supplementary material(File)
File 1 MB
11
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Drivers of population change in common farmland birds in Germany
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Drivers of population change in common farmland birds in Germany
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Drivers of population change in common farmland birds in Germany
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *