Skip to main content
×
×
Home

Additive negative effects of Philornis nest parasitism on small and declining Neotropical bird populations

  • MARIANA BULGARELLA (a1), MARTÍN A. QUIROGA (a2) and GEORGE E. HEIMPEL (a3)
Summary

The declining-population paradigm holds that small populations are particularly vulnerable to anthropogenic influences such as habitat destruction, pollution and species introductions. While the effects of particular stressors, such as parasitism, may be unimportant in a large, healthy population, they can be serious and even devastating in situations characterised by a restricted geographic range, or by fragmented or reduced population sizes. We apply this idea to nest parasitism of threatened Neotropical bird species that exist in small populations, focusing on dipteran nest parasites in the genus Philornis. We review the literature on Philornis parasitism exerting negative pressure on bird populations that have become small and isolated due to human actions and present a new case of Philornis parasitism of a threatened hummingbird species. Our aim is to raise awareness about the exacerbating effect that nest parasites can have on small and declining bird populations; especially when biological information is scarce. The five reviewed cases involve two species of Darwin’s Finches in the Galápagos Islands attacked by the invasive P. downsi, two species of hawks on islands in the Caribbean attacked by the native P. pici and P. obscura, and the Yellow Cardinal Gubernatrix cristata in southern South America attacked by an unknown Philornis species. We also present new documentation of parasitism of a threatened hummingbird species in mainland Ecuador by an unidentified Philornis species. We recommend more field studies to determine the presence of nest parasites in bird populations worldwide to improve understanding how nest parasites affect bird fitness and population viability and to allow time to act in advance if needed. Parasitism by Philornis may represent a severe mortality factor in most already threatened bird species, putting them at greater risk of extinction. Therefore, parasitism management should be included in all threatened species recovery plans.

El paradigma de las poblaciones en disminución afirma que las poblaciones pequeñas son particularmente vulnerables a las influencias antropogénicas tales como la destrucción de hábitats, la contaminación y la introducción de especies. Mientras los efectos de estresores particulares, tales como el parasitismo, pueden no ser importantes en poblaciones grandes y saludables, éstos podrían ser devastadores en poblaciones que tienen un rango geográfico restricto, un tamaño reducido o que se encuentran fragmentadas. Aquí se aplica esta idea al parasitismo de nido en especies de aves Neotropicales amenazadas con poblaciones pequeñas, enfocándonos en los parásitos de nido del género Philornis. Revisamos casos en la literatura referidos a el parasitismo de Philornis ejerciendo una presión negativa en poblaciones de aves que presentan un tamaño poblacional reducido o están aisladas debido a la acción humana y presentamos un nuevo caso de parasitismo de Philornis en una especie de colibrí en peligro de extinción. Nuestro objetivo es poner en relieve el efecto agravatorio que los parásitos de nidos pueden tener en poblaciones de aves reducidas y en disminución numérica, especialmente cuando la información biológica es escasa. Los cinco casos examinados incluyen dos especies de Pinzones de Darwin en las Islas Galápagos que son atacadas por la mosca invasora P. downsi, dos especies de gavilanes en islas del Caribe que son atacadas por las moscas nativas P. pici y P. obscura y el Cardenal Amarillo Gubernatrix cristata en el Sur de Sudamérica que es parasitado por una especie de Philornis sin identificar. Además, presentamos nueva información de parasitismo en una especie de colibrí en peligro en Ecuador que es atacada por una especie de Philornis no identificada. Recomendamos más estudios de campo a nivel mundial para determinar la presencia de parásitos de nido en poblaciones de aves con el objetivo de entender cómo estos parásitos afectan el fitness de las aves y la viabilidad de la población para actuar a tiempo de ser necesario. El parasitismo de Philornis puede representar un factor de mortalidad significativo que pone en mayor riesgo de extinción especies de aves que ya se encuentran en peligro. Por lo tanto, sugerimos que el manejo de parásitos sea incluido en todos los planes de recuperación de dichas especies.

Copyright
Corresponding author
*Author for correspondence; e-mail: Mariana.Bulgarella@vuw.ac.nz
References
Hide All
Andrén, H. (1992) Corvid density and nest predation in relation to forest fragmentation: a landscape perspective. Ecology 73: 794804.
Antoniazzi, L. R., Manzoli, D. E., Rohrmann, D., Saravia, M. J., Silvestri, L. and Beldomenico, P. M. (2011) Climate variability affects the impact of parasitic flies on Argentinean forest birds. J. Zool. 283: 126134.
Arendt, W. J. (1985) Philornis ectoparasitism of Pearly-eyed Thrashers. II. Effects on adults and reproduction. The Auk 102: 281292.
Arendt, W. J. (2000) Impact of nest predators, competitors, and ectoparasites on Pearly-eyed Thrashers, with comments on the potential implications for Puerto Rican Parrot recovery. Ornitol. Neotrop. 11: 1363.
Becker, C. D. and López Lanús, B. (1997) Conservation value of a Garúa forest in the dry season: a bird survey in Reserva Ecológica de Loma Alta, Ecuador. Cotinga 8: 6673.
Ben-Yosef, M., Zaada, D. S. Y., Dudaniec, R. Y., Pasternak, Z., Jurkevitch, E., Smith, R. J., Causton, C. E., Lincango, M. P., Tobe, S. S., Mitchell, J. G., Kleindorfer, S. and Yuval, B. (2017) Host-specific associations affect the microbiome of Philornis downsi, an introduced parasite to the Galápagos Islands. Mol. Ecol. 16: 46444656.
Bennet, A. F. and Saunders, D. A. (2010) Habitat fragmentation and landscape change. Pp. 88106 In Sodhi, N. S. and Ehrlich, P. R., eds. Conservation biology for all. New York, USA: Oxford University Press Inc.
Bertonatti, C. and López Guerra, A. (1997) Hibridación entre Cardenal Amarillo (Gubernatrix cristata) y Diuca Común (Diuca diuca minor) en estado silvestre en la Argentina. Hornero 14: 235242.
Bildstein, K. L. and Meyer, K. D. (2000) Sharp-shinned Hawk (Accipiter striatus). In Poole, A., ed. The birds of North America Online. Ithaca, NY, USA: Cornell Lab of Ornithology. Retrieved from the Birds of North America Online https://birdsna.org/Species-Account/bna/species/shshaw doi:10.2173/bna.482
BirdLife International (2000) Threatened birds of the world. Barcelona, Spain and Cambridge, UK: Lynx Edicions and BirdLife International.
BirdLife International (2017) The IUCN Red List of Threatened Species 2017. http://www.iucnredlist.org/
Boulton, R. A. and Heimpel, G. E. (2017) Potential for biological control of a parasite of Darwin’s finches. Pp. 2328 in Van Driesche, R. G., and Reardon, R. C., eds. Suppressing over-abundant invasive plants and insects in natural areas by use of their specialized natural enemies. Morgantown, WV, USA: FHTET, USDA Forest Service.
Boulton, R. A., Bulgarella, M., Ramirez, I. M., Causton, C. E. and Heimpel, G. E. (2018) Management of an invasive avian parasitic fly in the Galápagos Islands: Is biological control a viable option? Proc. Island Invasive Conf. In press.
Bulgarella, M. and Heimpel, G. E. (2015) Host range and community structure of avian nest parasites in the genus Philornis (Diptera: Muscidae) on the island of Trinidad. Ecol. Evol. 5: 36953703.
Bulgarella, M., Quiroga, M. A., Brito Vera, G. A., Dregni, J. S., Cunninghame, F., Mosquera Muñoz, D. A, Monje, L. D., Causton, C. E. and Heimpel, G. E. (2015) Philornis downsi, an avian nest parasite invasive to the Galápagos Islands, in mainland Ecuador. Ann. Entomol. Soc. Am. 108: 242250.
Bulgarella, M., Quiroga, M. A., Boulton, R. A., Ramírez, I. E., Moon, R. D., Causton, C. E. and Heimpel, G. E. (2017) Life cycle and host specificity of the parasitoid Conura annulifera (Hymenoptera: Chalcididae), a potential biological control agent of Philornis downsi (Diptera: Muscidae) in the Galápagos Islands. Ann. Entomol. Soc. Am. 110: 317328.
Carmi, O., Witt, C. C., Jaramillo, A. and Dumbacher, J. P. (2016) Phylogeography of the Vermilion Flycatcher species complex: Multiple speciation events, shifts in migratory behavior, and an apparent extinction of a Galápagos-endemic bird species. Mol. Phylogenet. Evol. 102: 152173.
Caughley, G. (1994) Directions in conservation biology. J. Anim. Ecol. 63: 215244.
Causton, C. E., Peck, S. B., Sinclair, B. J., Roque-Albelo, L., Hodgson, C. J. and Landry, B. (2006) Alien insects: Threats and implications for conservation of Galápagos Islands. Ann. Entomol. Soc. Am. 99: 121143.
Christensen, R., Kleindorfer, S. and Robertson, J. G. M. (2006) Song is a reliable signal of bill morphology in Darwin’s small tree finch, Camarhynchus parvulus, and vocal performance predicts male pairing success. J. Avian Biol. 37: 617624.
Cimadom, A., Ulloa, A., Meidl, P., Zöttl, M., Zöttl, E., Fessl, B., Nemeth, E., Dvorak, M., Cunninghame, F. and Tebbich, S. (2014) Invasive parasites, habitat change and heavy rainfall reduce breeding success in Darwin’s finches. PLoS ONE 9: e10751.
Cimadom, A., Causton, C., Cha, D. H., Damiens, D., Fessl, B., Hood-Nowotny, R., Lincango, P., Mieles, A. E., Nemeth, E., Semler, E. M., Teale, S. A. and Tebbich, S. (2016) Darwin’s finches treat their feathers with a natural repellent. Sci. Rep. 6: 34559. doi:10.1038/srep34559.
Clout, M. N. and Merton, D. V. (1998) Saving the Kakapo: the conservation of the world’s most peculiar parrot. Bird Conserv. Internatn. 8: 281296.
Combes, C. (2001) Parasitism: The ecology and evolution of intimate interactions. Chicago, IL, USA: University of Chicago Press.
Couri, M. (1999) Myiasis caused by obligatory parasites. Ia. Philornis Meinert (Muscidae). Pp. 5170 in Guimaraes, J., and Papavero, N., eds. Myasis in man and animals in the Neotropical region. São Paulo, Brazil: Plêiade.
Couri, M. S. and Carvalho, C. J. B. (2003) Systematic relations among Philornis Meinert, Passeromyia Rodhain & Villeneuve and allied genera (Diptera, Muscidae). Braz. J. Biol. 63: 223232.
Couri, M. S., Carvalho, C. J. B. and Löwenberg-Neto, P. (2007) Phylogeny of Philornis Meinert species (Diptera: Muscidae). Zootaxa 1530: 1926.
Cristinacce, A., Ladkoo, A., Switzer, R., Jordan, L., Vencatasamy, V., de Ravel Koenig, F., Jones, C. and Bell, D. (2008) Captive breeding and rearing of critically endangered Mauritius fodies Foudia rubra for reintroduction. Zoo Biol. 27: 255268.
Cristinacce, A., Handschuh, M., Switzer, R. A., Cole, R. E., Tatayah, V., Jones, C. G. and Bell, D. (2009) The release and establishment of Mauritius fodies Foudia rubra on Ile aux Aigrettes, Mauritius. Conserv. Evid. 6: 15.
Cunninghame, F., Young, H. G., Sevilla, C., Carrión, V. and Fessl, B. (2013) A trial translocation of the critically endangered mangrove finch: Conservation management to prevent the extinction of Darwin’s rarest finch. Pp. 174179 in Galapagos Report 2011–2012. Puerto Ayora, Galápagos, Ecuador: GNPS, GCREG, CDF and GC.
Cunninghame, F., Switzer, R., Parks, B., Young, G., Carrión, A., Medranda, P. and Sevilla, C. (2015) Conserving the critically endangered mangrove finch: Head-starting to increase population size. Pp. 151157 in Galapagos Report 2013–2014. Puerto Ayora, Galápagos, Ecuador: GNPD, GCREG, CDF and GC.
Cunninghame, F., Fessl, B., Sevilla, C., Young, G. and La Greco, N. (2017) Manejo de la conservación a largo plazo para salvar al pinzón de manglar (Camarhynchus heliobates) en peligro crítico de extinción. Pp. 163170 in Informe Galápagos 2015–2016. Puerto Ayora, Galápagos, Ecuador: DPNG, CGREG, FCD and GC.
Custance, G. (2015) Parasite-induced beak deformation alters song and lowers vocal performance in Darwin’s tree finches (Camarhynchus spp.). Honours Thesis, School of Biological Sciences, Flinders University, South Australia.
Daoust, S. P., Bélisle, M., Savage, J., Robillard, A., Baeta, R. and Brodeur, J. (2012) Direct and indirect effects of landscape structure on a tri-trophic system within agricultural lands. Ecosphere 3: 119.
Delannoy, C. A. (1992) Status surveys of the Puerto Rican Sharp-shinned Hawk (Accipiter striatus venator) and Puerto Rican Broad-winged Hawk (Buteo platypterus brunnescens). Final Report submitted to the U.S. Fish and Wildlife Service as specified in work contract no. 14-16-0004-91-031.
Delannoy, C. A. (1997) Status of the Broad-Winged Hawk and Sharp-Shinned Hawk in Puerto Rico. Carib. J. Sci. 33: 2133.
Delannoy, C. A. and Cruz, A. (1991) Philornis parasitism and nestling survival of the Puerto Rican Sharp-shinned Hawk. Pp. 93103 in Loye, J. E. and Zuk, M., eds. Bird-parasite interactions, ecology, evolution and behavior. NY, USA: Oxford University Press.
Delvare, G., Heimpel, G. E., Baur, H., Chadee, D. D., Martinez, R. and Knutie, S. A. (2017) Description of Brachymeria philornisae sp n. (Hymenoptera: Chalcididae), a parasitoid of the bird parasite Philornis trinitensis (Diptera: Muscidae) in Tobago, with a review of the sibling species. Zootaxa 4242: 3460.
Dodge, H. R. and Aitken, T. H. G. (1968) Philornis flies from Trinidad (Diptera: Muscidae). J. Kansas Entomol. Soc. 41: 134154.
Domínguez, M., Reboreda, J. C. and Mahler, B. (2015) Impact of Shiny Cowbird and botfly parasitism on the reproductive success of the globally endangered Yellow Cardinal Gubernatrix cristata. Bird Conserv. Internatn. 25: 294305.
Domínguez, M., Reboreda, J. C. and Mahler, B. (2016) Effects of fragmentation and hybridization on geographical patterns of song variation in the endangered Yellow Cardinal Gubernatrix cristata. Ibis 158: 738746.
Dudaniec, R. Y. and Kleindorfer, S. (2006) Effects of the parasitic flies of the genus Philornis (Diptera: Muscidae) on birds. Emu 106: 1320.
Dudaniec, R. Y., Kleindorfer, S. and Fessl, B. (2006) Effects of the introduced ectoparasite Philornis downsi on haemoglobin level and nestling survival in Darwin’s Small Ground Finch (Geospiza fuliginosa). Austral Ecol. 31: 8894.
Dudaniec, R. Y., Fessl, B. and Kleindorfer, S. (2007) Interannual and interspecific variation on intensity of the parasitic fly, Philornis downsi, in Darwin’s finches. Biol. Conserv. 139: 325332.
Dudaniec, R., Gardner, M. G. and Kleindorfer, S. (2010) Offspring genetic structure reveals mating and nest infestation behaviour of an invasive parasitic fly (Philornis downsi) of Galápagos birds. Biol. Inv. 12: 581592.
Dvorak, M., Vargas, H., Fessl, B. and Tebbich, S. (2004) On the verge of extinction: a survey of the mangrove finch Cactospiza heliobates and its habitat on the Galápagos Islands. Oryx 38: 171179.
Dvorak, M., Fessl, B., Nemeth, E., Kleindorfer, S. and Tebbich, S. (2012) Distribution and abundance of Darwin’s finches and other land birds on Santa Cruz Island, Galapagos: evidence for declining populations. Oryx 46: 19.
Dvorak, M., Nemeth, E., Wendelin, B., Herrera, P., Mosquera, D., Anchundia, D., Sevilla, C., Tebbich, S. and Fessl, B. (2017) Conservation status of landbirds on Floreana: the smallest inhabited Galápagos Island. J. Field Ornithol. 88: 132145.
Edworthy, A. B. (2016a) Competition and aggression for nest cavities between Striated Pardalotes and endangered Forty-spotted Pardalotes. Condor 118: 111.
Edworthy, A. B. (2016b) Avian hosts, prevalence and larval life history of the ectoparasitic fly Passeromyia longicornis (Diptera: Muscidae) in south-eastern Tasmania. Aust. J. Ecol. 64: 100106.
Ferguson-Lees, J. and Christie, D. (2001). Raptors of the world . NY, USA: Houghton Mifflin Company.
Fessl, B. and Tebbich, S. (2002) Philornis downsi– a recently discovered parasite on the Galápagos archipelago – a threat for Darwin’s finches? Ibis 144: 445451.
Fessl, B., Sinclair, B. J. and Kleindorfer, S. (2006a) The life-cycle of Philornis downsi (Diptera: Muscidae) parasitizing Darwin’s finches and its impacts on nestling survival. Parasitol. 133: 739747.
Fessl, B., Kleindorfer, S. and Tebbich, S. (2006b) An experimental study on the effects of an introduced parasite in Darwin’s finches. Biol. Conserv. 127: 5561.
Fessl, B., Young, H. G., Young, R. P., Rodríguez-Matamoros, J., Dvorak, M. and Tebbich, S. (2010a) How to save the rarest Darwin’s finch from extinction: The mangrove finch on Isabela Island. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365: 10191030.
Fessl, B., Vargas, H., Carrión, V., Young, R., Deem, S., Rodríguez-Matamoros, J., Atkinson, R., Carvajal, O., Cruz, F., Tebbich, S. and Young, H. G., eds. (2010b) Galápagos Mangrove Finch Camarhynchus heliobates Recovery Plan 2010–2015. Durrell Wildlife Conservation Trust, Charles Darwin Foundation, Galapagos National Park Service.
Fessl, B., Heimpel, G. E. and Causton, C. E. (2018) Invasion of an avian nest parasite, Philornis downsi, to the Galapagos Islands: Colonization history, adaptations to novel ecosystems, and conservation challenges. Pp. 213266 in Parker, P. G., ed. Disease ecology. Social and ecological interactions in the Galapagos Islands. Cham, Switzerland: Springer.
Finkelstein, M. E., Doak, D. F., George, D., Burnett, J., Brandt, J., Church, M., Grantham, J. and Smith, D. R. (2012) Lead poisoning and the deceptive recovery of the critically endangered California condor. Proc. Natl. Acad. Sci. USA. 109: 1144911454.
Flaspohler, D. J., Temple, S. A. and Rosenfield, R. N. (2001) Species-specific edge effects on nest success and breeding bird density in a forested landscape. Ecol. Appl. 11: 3246.
Fraga, R. M. (1984) Bay-winged cowbirds (Molothrus badius) remove ectoparasites from their brood parasites, the screaming cowbirds (M. rufoaxillaris). Biotropica 16: 223226.
Gallardo, J. C. and Vilella, F. J. (2014) El Gavilán de Sierra de Puerto Rico (Accipiter striatus vennator): una rapaz insular críticamente amenazada. Spizaetus 17: 213.
Galligan, T. H. and Kleindorfer, S. (2009) Naris and beak malformation caused by the parasitic fly, Philornis downsi (Diptera: Muscidae), in Darwin’s small ground finch, Geospiza fuliginosa (Passeriformes: Emberizidae). Biol. J. Linnean Soc. 98: 577585.
Gentes, M.-L., Whitworth, T. L., Waldner, C., Fenton, H. and Smits, J. E. (2007) Tree swallows (Tachycineta bicolor) nesting on wetlands impacted by oil sands mining are highly parasitised by the bird blow fly Protocalliphora spp. J. Wildl. Dis. 43: 167178.
Gill, F. B. (2007) Ornithology. Third edition. NY, USA: W. H. Freeman and Company.
Gilpin, M. E. and Soulé, M. E. (1986) Minimum viable populations: processes of extinction. Pp. 1934 in Soulé, M. E., ed. Conservation biology: The science of scarcity and diversity. Sunderland, MA, USA: Sinauer Associates.
Grant, P. R. (1999) Ecology and evolution of Darwin’s finches. Princeton, NJ, USA: Princeton University Press.
Grant, P. R. and Grant, B. R. (1997) The rarest of Darwin’s Finches. Conserv. Biol. 11: 119126.
Grant, P. R., Grant, B. R., Petren, K. and Keller, L. F. (2005) Extinction behind our backs: the possible fate of one of the Darwin’s finch species on Isla Floreana, Galápagos. Biol. Conserv. 122: 499503.
Harcourt, C. and Ottenwalder, J. A. (1996) Hispaniola. Pp. 102111 in Harcourt, C. S., and Sayer, J. A., eds. The conservation atlas of tropical torests, the Americas. Gland, Switzerland IUCN.
Harris, J. B. C., Agreda, A. E., Juiña, M. E. and Freymann, B. P. (2009) Distribution, plumage, and conservation status of the endemic Esmeraldas Woodstar (Chaetocercus berlepschi) of Western Ecuador. Wilson J. Ornithol. 121: 227239.
Hayes, C. D., Hayes, T. I., McClure, C. J. W., Quiroga, M., Thorstrom, R. and Anderson, D. L. (2018) Native parasitic nest fly impacts reproductive success of an island-endemic host. Anim. Conserv. In press.
Heimpel, G. E. (2017) Could biological control protect Darwin’s finches from an invasive parasite? Biocontrol News Inform. 38: 21N22N.
Heimpel, G. E., Hillstrom, A., Freund, D., Knutie, S. A. and Clayton, D. H. (2017) Invasive parasites and the fate of Darwin’s finches in the Galapagos Islands: the case of the vegetarian finch. Wilson J. Ornithol. 129: 345349.
Huber, S. K., Owen, J. P., Koop, J. A. H., King, M. O., Grant, P. R., Grant, B. R. and Clayton, D. H. (2010) Ecoimmunity in Darwin’s finches: Invasive parasites trigger acquired immunity in the Medium Ground Finch (Geospiza fortis). PLoS ONE 5: e8605.
Keith, A., Wiley, J., Latta, S. and Ottenwalder, J. (2003) The birds of Hispaniola: Haiti and the Dominican Republic. An annotated checklist. Tring, UK: British Ornithologists’ Union. (BOU No. 21).
Kleindorfer, S. and Dudaniec, R. Y. (2016) Host-parasite ecology, behavior and genetics: a review of the introduced fly parasite Philornis downsi and its Darwin’s finch hosts. BMC Zool. 1:1. doi.org/10.1186/s40850-016-0003-9.
Kleindorfer, S. and Sulloway, F. J. (2016) Naris deformation in Darwin’s finches: experimental and historical evidence for a post-1960s arrival of the parasite Philornis downsi. Global Ecol. Conserv. 7: 122131.
Kleindorfer, S., Peters, K. J., Custance, G., Dudaniec, R. Y. and O’Connor, J. (2014a) Changes in Philornis infestation behavior threaten Darwin’s finch survival. Curr. Zool. 60: 542550.
Kleindorfer, S., O’Connor, J. A., Dudaniec, R. Y., Myers, S. A., Robertson, J. and Sulloway, F. J. (2014b) Species collapse via hybridization in Darwin’s tree finches. Am. Nat. 183: 325341.
Kleindorfer, S., Peters, K. J., Hohl, L. and Sulloway, F. J. (2016) Flight behaviour of an introduced parasite affects its Galapagos Island hosts: Philornis downsi and Darwin’s finches. Pp. 158179 in Weiss, J. S. and Sol, D., eds. Biological invasions and animal behaviour. Cambridge, UK: Cambridge University Press.
Knutie, S. A., McNew, S. M., Bartlow, A. W., Vargas, D. A. and Clayton, D. H. (2014) Darwin’s finches combat introduced nest parasites with fumigated cotton. Curr. Biol. 24: R355R356.
Knutie, S. A., Owen, J. P., McNew, S. M., Bartlow, A. W., Arriero, E., Herman, J. M., DiBlasi, E., Thompson, M., Koop, J. A. H. and Clayton, D. H. (2016) Galápagos mockingbirds tolerate introduced parasites that affect Darwin’s finches. Ecology. 97: 940950.
Knutie, S. A., Herman, J. M., Owen, J. P. and Clayton, D. H. (2017) Tri-trophic ecology of native parasitic nest flies of birds in Tobago. Ecosphere 8: e01670.
Koop, J. A. H., Huber, S. K., Laverty, S. M. and Clayton, D. H. (2011) Experimental demonstration of the fitness consequences of an introduced parasite of Darwin’s finches. PLoS ONE 6: e19706.
Koop, J. A. H., Le Bohec, C. and Clayton, D. H. (2013a) Dry year does not reduce invasive parasitic fly prevalence or abundance in Darwin’s finch nests. Reports Parasitol. 3: 1117.
Koop, J. A. H., Owen, J. P., Knutie, S. A., Aguilar, M. A. and Clayton, D. H. (2013b) Experimental demonstration of a parasite-induced immune response in wild birds: Darwin’s finches and introduced nest flies. Ecol. Evol. 3: 25142523.
Koop, J. A. H., Kim, P. S., Knutie, S. A., Adler, F. and Clayton, D. H. (2016) Introduced parasitic fly may lead to local extinction of Darwin’s finch populations. J. Appl. Ecol. 53: 511518.
Lack, D. (1947) Darwin’s finches. Cambridge, UK: Cambridge University Press.
Lahuatte, P., Lincango, M. P., Heimpel, G. E. and Causton, C. E. (2016) Rearing larvae of the avian nest parasite, Philornis downsi (Diptera: Muscidae), on chicken blood-based diets. J. Insect Sci. 16: 17.
Lawson, L. P., Fessl, B., Vargas, F. H., Farrington, H. L., Cunninghame, H. F., Mueller, J. C., Nemeth, E., Sevilla, P. C. and Petren, K. (2017) Slow motion extinction: inbreeding, introgression, and loss in the critically endangered mangrove finch (Camarhynchus heliobates). Conserv. Genet. 18: 159170.
Little, S. E. (2008) Myiasis in wild birds. Pp. 546556 in Atkinson, C. T., Thomas, N. J. and Hunter, D. B., eds. Parasitic diseases of wild birds. Indiana, USA: Wiley Blackwell.
Lloyd, B. D. and Powlesland, R. G. (1994) The decline of kakapo Strigops habroptilus and attempts at conservation by translocation. Biol. Conserv. 69: 7585.
Loye, J. E. and Carroll, S. P. (1995) Birds, bugs and blood: avian parasitism and conservation. Trends Ecol. Evol. 10: 232235.
Loye, J. E. and Carroll, S. P. (1998) Ectoparasite behavior and its effects on avian nest site selection. Ann. Entomol. Soc. Am. 91: 159163.
Löwenberg-Neto, P. (2008) The structure of the parasite-host interactions between Philornis (Diptera: Muscidae) and Neotropical birds. J. Trop. Ecol. 24: 575580.
Macquart, J. (1854) Notice sur une nouvelle espèce d’Aricie, diptère de la tribu des Anthomyzides. Ann. Soc. Entomol. Fr. 1: 657660.
Manzoli, D. E., Antoniazzi, L. R., Saravia, M. J., Silvestri, L., Rorhmann, D. and Beldomenico, P. M. (2013) Multi-level determinants of parasitic fly infection in forest passerines. PLoS ONE 8: e67104.
Manzoli, D. E., Saravia-Pietropaolo, M. J., Antoniazzi, L. R., Barengo, E., Arce, S. I., Quiroga, M. A. and Beldomenico, P. M. (2018) Contrasting consequences of different defence strategies in a natural multihost–parasite system. Int. J. Parasitol. 48: 445455.
Maron, M. and Kennedy, S. (2007) Roads, fire and aggressive competitors: Determinants of bird distribution in subtropical production forests. Forest Ecol. Manag. 240: 2431.
McClure, C. J. W., Rolek, B. W., Hayes, T. I., Hayes, C. D., Thorstrom, R., Curti, M. and Anderson, D. L. (2017) Successful enhancement of Ridgway’s Hawk populations through recruitment of translocated birds. Condor 119: 855864.
McNew, S. M. and Clayton, D. H. (2018) Alien invasion: Biology of Philornis flies highlighting Philornis downsi, an introduced parasite of Galápagos birds. Ann. Rev. Entomol. 63: 1. doi: 10.1146/annurev-ento-020117-043103.
Moran, C., Catterall, C. P. and Kanowski, J. (2009) Reduced dispersal of native plant species as a consequence of the reduced abundance of frugivore species in fragmented rainforest. Biol. Conserv. 142: 541552.
O’Connor, J. A., Robertson, J. and Kleindorfer, S. (2010a) Video analysis of host-parasite interactions in Darwin’s finch nests. Oryx 44: 588594.
O’Connor, J. A., Sulloway, F. J., Robertson, J. and Kleindorfer, S. (2010b) Philornis downsi parasitism is the primary cause of nestling mortality in the critically endangered Darwin’s medium tree finch (Camarhynchus pauper). Biodivers. Conserv. 19: 853866.
O’Connor, J. A., Sulloway, F. J. and Kleindorfer, S. (2010c) Avian population survey in the Floreana highlands: is Darwin’s Medium Tree Finch declining in remnant patches of Scalesia forest? Bird Conserv. Internatn. 20: 343353.
O’Connor, J. A., Robertson, J. and Kleindorfer, S. (2014) Darwin finch begging intensity does not honestly signal need in parasitised nests. Ethology 120: 228237.
Owen, D. F. (1957) Neottiophilum praestum in birds’ nests. British Birds 50: 160164.
Pessino, M. and Tittarelli, R. F. (2006) The Yellow Cardinal (Gubernatrix cristata): a diagnosis of its situation in the province of La Pampa, Argentina. Gestión Ambiental 12: 6976.
Peters, K. J. and Kleindorfer, S. (2015) Divergent foraging behavior in a hybrid zone: Darwin’s tree finches (Camarhynchus spp.) on Floreana Island. Curr. Zool. 61: 181190.
Peters, K. J. and Kleindorfer, S. (2017) Avian population trends in Scalesia forest on Floreana Island (2004–2013): Acoustical surveys cannot detect hybrids of Darwin’s Tree Finches (Camarhynchus spp.). Bird Conserv. Internatn. doi:10.1017/S0959270916000630.
Peters, K. J., Myers, S. A., Dudaniec, R. Y., O’Connor, J. A. and Kleindorfer, S. (2017) Females drive asymmetrical introgressive hybridisation from rare to common species in Darwin’s tree finches. J. Evol. Biol. 30: 19401952.
Pont, A. C. (1974) A revision of the genus Passeromyia Rodhain and Villeneuve (Diptera: Muscidae). Bull. Br. Mus. Nat. Hist. Entomol. 30: 339372.
Potter, M. A. (1990) Movement of North Island Brown Kiwi (Apteryx australis mantelli) between forest remnants. New Zeal. J. Ecol. 14: 1724.
Quiroga, M. A. and Reboreda, J. C. (2012) Lethal and sublethal effects of botfly (Philornis seguyi) parasitism on house wren nestlings. Condor 114: 197202.
Rabuffetti, F. L. and Reboreda, J. C. (2007) Early infestation by botflies (Philornis seguyi) decreases chick survival and nesting success in Chalk-browed Mockingbirds (Mimus saturninus). The Auk 124: 898906.
Reyes, E. M. R. and Astudillo-Sánchez, E. (2017) Notes on the nest, owlets, diet, and parasites of the Choco Screech-Owl (Megascops guatemalae centralis) in Loma Alta Communal Reserve, Western Ecuador. Wilson J. Ornithol. 129: 377381.
Ridgely, R. S. and Tudor, G. (2009) Field guide to the songbirds of South America. The Passerines. Austin, TX, USA: University of Texas Press.
Sabrosky, C. W., Bennett, G. F. and Whitworth, T. L. (1989) Bird blow flies (Protocalliphora) in North America (Diptera: Calliphoridae), with notes on the Palearctic species. Washington, D.C, USA: Smithsonian Institute Press.
Scott, M. E. (1988) The impact of infection and disease on animal populations: Implications for Conservation Biology. Conserv. Biol. 2: 4056.
Snyder, N. F. R. and Snyder, H. A. (2000) The California Condor: A saga of natural history and conservation. London, UK: Academic Press.
Snyder, N. F. R., Wiley, J. W. and Kepler, C. B. (1987) The Parrots of Luquillo, natural history and conservation of the Puerto Rican Parrot. Los Angeles, CA: Western Foundation of Vertebrate Zoology.
Teixeira, D. M. (1999) Myiasis caused by obligatory parasites. Ib. General observations on the biology of species of the genus Philornis Meinert, 1890 (Diptera, Muscidae). In Guimaraes, J., and Papavero, N., eds. Myiasis in man and animals in the Neotropical region. São Paulo, Brazil: Editora Plêiade.
Thorstrom, R., Almonte, J. and Balbuena de la Rosa, S. (2007) Current status and breeding biology of the Ridgway’s Hawk. Pp. 3339 in Bildstein, K. L., Barber, D. R., and Zimmerman, A., eds. Neotropical raptors. Kempton, PA, USA: Hawk Mountain Publisher.
USFWS (1997) Puerto Rican Broad-winged Hawk and Puerto Rican Sharp-shinned Hawk Recovery Plan. Atlanta, GA, USA: U.S. Fish and Wildlife Service.
White, T. H., Collar, N. J., Moorhouse, R. J., Sanz, V., Stolen, E. D. and Brightsmith, D. J. (2012) Psittacine reintroductions: Common denominators of success. Biol. Conserv. 148: 106115.
Wiedenfeld, D. A., Jiménez, U., , G. A., Fessl, B., Kleindorfer, S. and Valarezo, J. C. (2007) Distribution of the introduced parasitic fly Philornis downsi (Diptera, Muscidae) in the Galapagos Islands. Pacific Conserv. Biol. 13: 1419.
Wiley, J. W. (1986) Habitat change and its effects on Puerto Rican raptors. Bird Prey Bull. 3: 5156.
Wiley, J. and Wiley, B. (1981) Breeding season ecology and behavior of Ridgway’s Hawk (Buteo ridgwayi). Condor 83: 132151.
Wiley, J. W. and Wunderle, J. M. Jr. (1993) The effects of hurricanes on birds, with special reference to Caribbean islands. Bird Conserv. Internatn. 3: 319349.
Williams, D. R., Pople, R. G., Showler, D. A., Dicks, L. V., Child, M. F., zu Ermgassen, E. K. H. J. and Sutherland, W. J. (2012) Bird conservation: Global evidence for the effects of interventions. Exeter, UK: Pelagic Publishing.
Wilson, E. O. (2017) Biodiversity research requires more boots on the ground. Nature Ecol. Evol. 1: 15901591.
Wimberger, P. H. (1984) The use of green plant material in bird nests to avoid ectoparasites. The Auk 101: 615618.
Woolaver, L. G., Nichols, R. K., Morton, E. S. and Stutchbury, B. J. M. (2013) Population genetics and relatedness in a critically endangered island raptor, Ridgway’s Hawk Buteo ridgwayi. Conserv. Genet. 14: 559571.
Woolaver, L. G., Nichols, R. K., Morton, E. S. and Stutchbury, B. J. M. (2015) Breeding ecology and predictors of nest success in the Critically Endangered Ridgway’s Hawk Buteo ridgwayi. Bird Conserv. Internatn. 25: 385398.
Young, H. G., Cunninghame, F., Fessl, B. and Vargas, F. H. (2013) Mangrove finch Camarhynchus heliobates an obligate mangrove specialist from the Galapagos Islands. Pp. 107121. In Gleason, G. and Victor, T. R., eds. Mangrove ecosystems. NY, USA: Nova Science Publishers Inc.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bird Conservation International
  • ISSN: 0959-2709
  • EISSN: 1474-0001
  • URL: /core/journals/bird-conservation-international
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed