Skip to main content
×
×
Home

Avian population survey in the Floreana highlands: is Darwin’s Medium Tree Finch declining in remnant patches of Scalesia forest?

  • JODY A. O’CONNOR (a1), FRANK J. SULLOWAY (a2) and SONIA KLEINDORFER (a1)
Summary

Island species typically exist in pathogen and predator sparse environments before human settlement, and are particularly vulnerable to the impacts of invasive species. In this study, we used the variable circular-plot method to estimate the density of birds in the highlands of Floreana Island, Galápagos Archipelago, where introduced parasites, predators, and habitat degradation are a known threat to endemic species. We recorded the number of birds seen and heard at 15 locations near Cerro Pajas Volcano in 2004 and 2008, an area that harbours the largest expanse of highland Scalesia forest on Floreana Island. We estimated the change in population density for nine bird species, including five species of Darwin’s finches. We specifically address changes in population density for the locally endemic Medium Tree Finch Camarhynchus pauper, which only occurs on Floreana Island and has a small population size. Comparing 2004 and 2008, our study found lower population density in the Medium Tree Finch, but stable population density in Small Tree Finch C. parvulus and Large Tree Finch C. psittacula. Based on data from three additional highland sites surveyed in 2008, we estimate that the maximum size of the Medium Tree Finch population is 1,620 individuals. In addition to the survey data, we observed breeding males in 2006 and 2008. We found: (1) low nesting success (six out of 63 nests produced fledglings) and high Philornis downsi parasite intensity, and (2) a biased age structure of the breeding population. No breeding males were one year old in 2006, and no males were five years old in either study year, indicating low reproductive success as well as limited lifespan. This research has contributed to the recent re-evaluation by IUCN, which has changed the Red List status of the Medium Tree Finch from ‘Vulnerable’ to ‘Critically Endangered’.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Avian population survey in the Floreana highlands: is Darwin’s Medium Tree Finch declining in remnant patches of Scalesia forest?
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Avian population survey in the Floreana highlands: is Darwin’s Medium Tree Finch declining in remnant patches of Scalesia forest?
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Avian population survey in the Floreana highlands: is Darwin’s Medium Tree Finch declining in remnant patches of Scalesia forest?
      Available formats
      ×
Copyright
Corresponding author
*Author for correspondence; email: sonia.kleindorfer@flinders.edu.au
References
Hide All
Baskin, Y. (2002) A plague of rats and rubber vines: The growing threat of species invasions. Washington DC: Island Press.
Bennett, P. M. and Owens, I. P. F. (1997) Variation in extinction risk among birds: chance or evolutionary predisposition? Proc. R. Soc. Lond. B. 264: 401408.
Bennett, P. M. and Owens, I. P. F. (2002) Evolutionary ecology of birds: Life history, mating system and extinction. New York: Oxford University Press.
Benning, T. L., Lapointe, D., Atkinson, C. T. and Vitousek, P. M. (2002) Interactions of climate change with biological invasions and land use in the Hawaiian Islands: Modeling the fate of endemic birds using geographic information system. Proc. Natl. Acad. Sci. USA 99: 1424614249.
BirdLife International. (2009a). Important Bird Area factsheet: Isla Floreana, Ecuador. Downloaded from the Data Zone at http://www.birdlife.org on 15/5/2009
BirdLife International. (2009b). Species factsheet: Camarhynchus pauper. Downloaded from http://www.birdlife.org on 15/5/2009
Boada, R. (2005) Insects associated with endangered plants in the Galápagos Islands, Ecuador. Entomotropica 20: 7788.
Causton, C. E., Peck, S. B., Sinclair, B. J., Roque-Albelo, L., Hodgson, C. J. and Landry, B. (2006) Alien insects: threats and implications for the conservation of the Galápagos Islands. Ann. Entomol. Soc. Am. 99: 121143.
Christensen, R. and Kleindorfer, S. (2008) Jack-of-all-trades or master of one? Variation in foraging specialisation across years in Darwin’s Tree Finches (Camarhynchus spp.). J. Ornithol. doi:10.1007/s10336-008-0358-y.
Curry, R. L. (1986) Whatever happened to the Floreana Mockingbird? Not. Galáp. 43: 1315.
Dudaniec, R. Y., Fessl, B. and Kleindorfer, S. (2007) Interannual and interspecific variation on intensity of the parasitic fly, Philornis downsi, in Darwin’s finches. Biol. Conserv. 139: 325332.
Dudaniec, R. Y., Kleindorfer, S. and Fessl, B. (2006) Effects of the introduced ectoparasite Philornis downsi on haemoglobin level and nestling survival in Darwin’s small ground finch (Geospiza fuliginosa). Austral Ecol. 31: 8894.
Eibl-Eibesfeldt, I. (1959) Survey of the Galápagos Islands. Paris: UNESCO (UNESCO Missions Report No. 8).
Fessl, B., Kleindorfer, S. and Tebbich, S. (2006a) An experimental study on the effects of an introduced parasite in Darwin’s finches. Biol. Conserv. 127: 5561.
Fessl, B., Sinclair, B. J. and Kleindorfer, S. (2006b) The life cycle of Philornis downsi (Diptera: Muscidae) parasitizing Darwin’s finches and its impacts on nestling survival. Parasitology 133: 739747.
Fessl, B. and Tebbich, S. (2002) Philornis downsi - a recently discovered parasite on the Galápagos archipelago - a threat for Darwin’s finches? Ibis 144: 445451.
Galligan, T. H. and Kleindorfer, S. (2009) Naris and beak malformation caused by the parasitic fly, Philornis downsi (Diptera: Muscidae), in Darwin’s small ground finch, Geospiza fuliginosa (Passeriformes: Emberizidae). Biol. J. Linn. Soc. 98: 577585.
Grant, P. R. (1999) Ecology and evolution of Darwin’s finches. Princeton: Princeton University Press.
Grant, P. R., Grant, B. R., Petren, K. and Keller, L. F. (2005) Extinction behind our backs: the possible fate of one of the Darwin’s finch species on Isla Floreana, Galápagos. Biol. Conserv. 122: 499503.
Hale, K. A. and Briskie, J. V. (2009) Rapid recovery of an island population of the threatened South Island Saddleback Philesturnus c. carunculatus after a pathogen outbreak. Bird Conserv. Internatn. 19: 239253.
Holmes, R. T. and Sherry, T. W. (2001) Thirty-year bird population trends in an unfragmented temperate deciduous forest: Importance of habitat change. Auk. 118: 589609.
Johnson, T. H. and Stattersfield, A. J. (1990) A global review of island endemic birds. Ibis 132: 167180.
Kleindorfer, S. (2007) Nesting success in Darwin’s small tree finch (Camarhynchus parvulus): Evidence of female preference for older males and more concealed nests. Anim. Behav. 74: 795804.
Kleindorfer, S. & Dudaniec, R. Y. (2006) Increasing prevalence of avian poxvirus in Darwin's finches and its effect on male pairing success. Journal of Avian Biology 37: 6976.
Kleindorfer, S., Chapman, T. W., Winkler, H. and Sulloway, F. J. (2006) Adaptive divergence in contiguous populations of Darwin’s small ground finch (Geospiza fuliginosa). Evol. Ecol. Res. 8: 357372.
Kleindorfer, S. and Mitchell, J. G. (2009) Biological networks: Rainforests, coral reefs and the Galápagos Islands. Pp. 85104 in Kleindorfer, P. R. and Wind, J., eds. Network challenge: the strategy, profit, and risk in an interlinked world. Pennsylvania, US: Wharton School Publishing.
Kleindorfer, S., Sulloway, F. J. and O’Connor, J. (2009) Mixed species nesting associations in Darwin’s tree finches: Nesting pattern predicts breeding performance. Biol. J. Linn. Soc. 98: 313324.
Lack, D. (1947) Darwin’s finches. Cambridge, UK: Cambridge University Press.
Martin, T. E., Paine, C. R., Conway, C. J., Hochachka, W. M., Allen, P. and Jenkins, W. (1997) BBIRD field protocol. Missoula, Montana, USA: University of Montana Cooperative Wildlife Research Unit, US Geological Survey.
Mauchamp, A. (1997) Threats from alien species in the Galápagos Islands. Conserv. Biol. 11: 260263.
O’Connor, J. A., Robertson, J. and Kleindorfer, S. (in press) Video analysis of host-parasite interactions in Darwin’s finch nests. Oryx
O’Connor, J. A., Sulloway, F. J., Robertson, J. and Kleindorfer, S. (2010) Philornis downsi parasitism is the primary cause of nestling mortality in the critically endangered Darwin’s medium tree finch (Camarhynchus pauper). Biodivers. Conserv. 19: 853866.
Reynolds, R. T., Scott, J. M. and Nussbaum, R. A. (1980) A variable circular plot method for estimating bird numbers. Condor 82: 309313.
Roth, R. R. and Johnson, R. K. (1993) Long-term dynamics of a wood thrush population breeding in a forest fragment. Auk 110: 3748.
Savidge, J. A. (1987) Extinction of an island forest avifauna by an introduced snake. Ecology 68: 660668.
Simberloff, D. (1995) Habitat fragmentation and population extinction of birds. Ibis 137: 105111.
Somershoe, S. G., Twedt, D. J. and Reid, B. (2006) Combining breeding bird survey and distance sampling to estimate density of migrant and breeding birds. Condor 108: 691699.
Steadman, D. (1986) Holocene vertebrate fossils from Isla Floreana, Galápagos. Washinton DC: Smithsonian Institution Press (Smithsonian Contributions to Zoology no. 413).
Steadman, D. W. (1995) Prehistoric extinctions of Pacific Island birds: biodiversity meets zooarchaeology. Science 267: 11231131.
Sulloway, F. J. (1982) The Beagle collections of Darwin’s finches (Geospizinae). Bull. Br. Mus. (Nat. Hist.) Zool. Ser. 43: 4994.
Thomas, L., Laake, J. L., Strindberg, S., Marques, F. F. C., Buckland, S. T., Borchers, D. L., Anderson, D. R., Burnham, K. P., Hedley, S. L., Pollard, J. H., Bishop, J. R. B. and Marques, T. A. (2006) Distance 5.0 Release 2. St. Andrews, UK: Research Unit for Wildlife Population Assessment, University of St. Andrews.
Wiedenfeld, D. A., Jimènez, G., Fessl, B., Kleindorfer, S. and Valerezo, J. C. (2007) Distribution of the introduced parasitic fly Philornis downsi (Diptera, Muscidae) in the Galápagos Islands. Pac. Conserv. Biol. 13: 1419.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bird Conservation International
  • ISSN: 0959-2709
  • EISSN: 1474-0001
  • URL: /core/journals/bird-conservation-international
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed