Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Mota-Vargas, Claudio and Rojas-Soto, Octavio R. 2016. Taxonomy and ecological niche modeling: Implications for the conservation of wood partridges (genus Dendrortyx). Journal for Nature Conservation, Vol. 29, p. 1.

    TOBÓN-SAMPEDRO, ARIADNA and ROJAS-SOTO, OCTAVIO R. 2015. The geographic and seasonal potential distribution of the little known Fuertes’s Oriole Icterus fuertesi. Bird Conservation International, Vol. 25, Issue. 04, p. 489.


Geographic and ecological analysis of the Bearded Wood Partridge Dendrortyx barbatus: some insights on its conservation status

  • DOI:
  • Published online: 12 July 2012

Delimiting the distribution of a species is a complex task because many determining factors are difficult to assess in the field. This is important because distribution is a key factor in the decision-making process for conservation. One example is the Bearded Wood Partridge Dendrortyx barbatus, a species endemic to the temperate forests of the Sierra Madre Oriental (SMO) mountain range in Mexico. Lack of knowledge of its distribution has generated confusion over the assignment of the correct risk category. With the aim of predicting the distribution area of the Bearded Wood Partridge and contributing to strategies for its conservation, we updated and extended the knowledge of its distribution by modelling its ecological niche using GARP and MaxEnt algorithms. We also analysed its environmental distribution using principal components analysis, and contrasted the two most important environmental variables with the species’s distribution based on vegetation type. We found that the area potentially occupied by this species covers 17,956 km2 according to GARP and 12,974 km2 according to MaxEnt. We suggest that there is a biogeographic barrier which limits the distribution of this species in the southern part of its range. The abiotic variables that best explain its distribution are average annual precipitation and elevation, both of which coincide well with the distribution of cloud forest. A redefinition of the current range as recognised by IUCN is proposed along with the need to change its national risk category.

Corresponding author
*Author for correspondence; email:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

R. P. Anderson , M. Gómez-Laverde and A. T Peterson . (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecol. Biogeog. 11: 131141.

R. P. Anderson , D. Lew and A. T Peterson . (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol. Model. 162: 211232.

C. Carroll , W. J. Zielinski and R. F Noss . (1999) Using presence–absence data to build and test spatial habitat models for the fisher in the Klamath Region, USA. Conserv. Biol. 13: 13441359.

M. J. R. Cowley , R. J. Wilson , J. L. León-Cortés , D. C. Gutierrez , R. Bulman and C. D Thomas . (2000) Habitat-based statistical models for predicting the spatial distribution of butterflies and day-flying moths in a fragmented landscape. J. Appl. Ecol. 37: 6072.

I. L Davis . (1952) Winter bird census at Xilitla, San Luis Potosi. Condor 54: 345350.

J. C. Eitniear , S. Aguilar , V. Gonzáles , R. Pedraza and. J. T Baccus . (2000) New records of Bearded Wood Partridge, Dendrortyx barbatus (Aves: Phasianidae) in México. Southwestern Nat. 45: 238241.

J. H. Elith , C. P. Graham , R. Anderson , M. Dudik , S. Ferrier , A. J. Guisan , R. Hijmans , F. R. Huettmann , J. Leathwick , A. Lehmann , J. G. Li , L. A. Lohmann , B. Loiselle , G. Manion , C. Moritz , M. Nakamura , Y. Nakazawa , J. McC Overton , A. T. Peterson , S. Phillips , K. Richardson , R. Scachetti-Pereira , R. Schapire , J. Soberon , S. S. Williams , M. Wisz and N. Zimmermann 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.

M. E. Godown and A. T Peterson . (2000) Preliminary distributional analysis of US endangered bird species. Biodivers. Conserv. 9: 13131322.

R. J. Hijmans S. E. Cameron , J. L. Parra , P. G. Jones and A. Jarvis (2005). Very high resolution interpolated climate surfaces for global land areas. Internatn. J. Climatol. 25: 19651978.

S. Manel , J. M. S. Dias , T. Buckton and S. J Omerod . (1999) Alternative methods for predicting species distribution: an illustration with Himalayan river birds. J. Appl. Ecol. 36: 734747.

C. Mota-Vargas and O. R. Rojas-Soto (2012) The importance of defining the geographic distribution of species for conservation: The case of the Bearded Wood-Partridge. J. Nature Conserv. 20: 1017.

L. L. Paniagua and J. J Morrone . (2009) Do the Oaxacan Highlands represent a natural biotic unit? A cladistic biogeographical test based on vertebrate taxa. J. Biogeog. 36: 19391944.

R. G. Pearson , C. Raxworthy , M. Nakamura and A. T Peterson . (2006) Predicting species’ distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeog. 34: 102117.

A. T Peterson . (2001) Predicting species geographic distributions based on ecological niche modeling. Condor 103: 599605.

A. T Peterson . (2003a) Predicting the geography of species’ invasions via ecological niche modeling. Q. Rev. Biol. 78: 419433.

A. T Peterson . (2003b) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Global Change Biol. 9: 647655.

A. T. Peterson , S. A. Navarro and H. Benítez-Díaz (1998) The need for continued scientific collecting; a geographic analysis of Mexican bird specimens. Ibis 140: 288294.

A. T. Peterson , C. Martínez-Campos , Y. Nakazawa and E. Martinez-Meyer (2005) Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Trans. R. Soc. Trop. Med. Hygiene 99: 647655.

S. J. Phillips , R. P. Anderson and R. E Schapire . (2006) Maximum entropy modeling of species geographic distributions. Ecol. Model. 190: 231259.

C. J. Raxworthy , E. Martínez-Meyer , N. Horning , R. A. Nussbaum , G. E. Schneider , M. A. Ortega-Huerta and A. T Peterson . (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426: 837841.

O. Rojas-Soto , O. Alcántara-Ayala and A. Navarro-Sigüenza (2003) Regionalization of the avifauna of the Baja California peninsula, Mexico: a parsimony analysis of endemicity and distributional modeling approach. J. Biogeog. 30: 449461.

O. Rojas-Soto , E. Martínez-Meyer , S. A. Navarro , A. Oliveras de Ita , H. Gómez de Silva and A. Townsend Peterson (2008) Modeling distributions of disjunct populations of the Sierra Madre Sparrow. J. Field Ornithol. 79: 245253.

SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales). (2011) Diario Oficial de la Federación (2001, 2011) Norma Oficial Mexicana NOM-059- ECOL-2001, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. México: Secretaría de Gobernación.

J. Soberón (2007) Grinnellian and Eltonian niches and geographic distributions of species Ecol. Lett. 10: 11151123.

J. Soberón and A. T Peterson . (2005). Interpretation of models of fundamental ecological niches and species distributional areas. Biodivers. Informatics 2: 110.

D. R. B. Stockwell and I. R Noble . (1991) Induction of sets of rules from animal distribution data: a robust and informative method of data analysis. Math. Comp. Simulat. 32: 249254.

D. R. B. Stockwell and D. Peters (1999) The GARP modelling system: problems and solutions to automated spatial prediction. Geog. Inf. Sci. 13: 143158.

A. Tsoar , O. Allouche , O. Steinitz , D. Rotem and R. Kadmon (2007) A comparative evaluation of presence-only methods for modeling species distribution. Divers. Distrib. 13: 397405.

D. L. Warren , R. E. Glor and M. Turelli (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 28682883.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bird Conservation International
  • ISSN: 0959-2709
  • EISSN: 1474-0001
  • URL: /core/journals/bird-conservation-international
Please enter your name
Please enter a valid email address
Who would you like to send this to? *