Hostname: page-component-7dc689bd49-q9qq5 Total loading time: 0 Render date: 2023-03-20T09:59:30.782Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

An Analysis of Factors Affecting Catches of Insects in Light-Traps

Published online by Cambridge University Press:  10 July 2009

John Bowden
Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ, UK


Analysis of published data on catches of insects in light-traps with a variety of light sources and of different designs showed that all conformed to the previously proposed model describing the functioning of a light-trap: catch = constant × where W = trap illumination and I = background illumination. Light-trap catches in differing cloud conditions and in open and woodland situations also varied as predicted by the model. A table of correction factors for different amounts of cloud cover is provided. The results are discussed in relation to use of light-traps and interpretation of light-trap data.

Original Articles
Copyright © Cambridge University Press 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Agee, H. R. (1972). Sensory response of the compound eye of adult Heliothis zea and H. virescens to ultraviolet stimuli.—Ann. ent. Soc. Am. 65, 701705.CrossRefGoogle Scholar
Austin, R. H., Phillips, B. F. & Webb, D. J. (1976). A method for calculating moonlight illuminance at the earth's surface.—J. appl. Ecol. 13, 741748.CrossRefGoogle Scholar
Baker, R. R. & Sadovy, Y. (1978). The distance and nature of the light-trap response of moths.—Nature, Lond. 276, 818821.CrossRefGoogle Scholar
Barrett, J. R. JrHarwood, F. W. & Deay, H. O. (1972). Functional association of light trap catches to emission of blacklight fluorescent lamps.—Environ. Entomol. 1, 285290.CrossRefGoogle Scholar
Betts, E. (1976). Forecasting infestations of tropical migrant pests: the desert locust and the African armyworm.—pp. 113134in Rainey, R. C. (Ed.). Insect flight.—287 pp. Oxford, Blackwell Scientific Publications (Symp. R. ent. Soc. Lond. no. 7).Google Scholar
Bowden, J. (1973 a). The significance of moonlight in photoperiodic responses of insects.—Bull. ent. Res. 62, 605612.CrossRefGoogle Scholar
Bowden, J. (1973 b). The influence of moonlight on catches of insects in light-traps in Africa. Part I. The moon and moonlight.—Bull. ent. Res. 63, 113128.CrossRefGoogle Scholar
Bowden, J. (1979). Photoperiod, dormancy and the end of flight activity in Chrysopa carnea Stephens (Neuroptera: Chrysopidae).—Bull. ent. Res. 69, 317330.CrossRefGoogle Scholar
Bowden, J. (1981). The relationship between light- and suction-trap catches of Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae), and the adjustment of light-trap catches to allow for variation in moonlight.—Bull. ent. Res. 71, 621629.CrossRefGoogle Scholar
Bowden, J. & Church, B. M. (1973). The influence of moonlight on catches of insects in light-traps in Africa. Part II. The effect of moon phase on light-trap catches.—Bull. ent. Res. 63, 129142.CrossRefGoogle Scholar
Bowden, J. & Morris, M. G. (1975). The influence of moonlight on catches of insects in light-traps in Africa. III. The effective radius of a mercury-vapour light-trap and the analysis of catches using effective radius.—Bull. ent. Res. 65, 303348.CrossRefGoogle Scholar
Brown, D. R. E. (1952). Natural illumination charts.—R & D Project NS 714–100. 68 pp. Washington, D.C., Dept. of the Navy, Bureau of Ships.Google Scholar
Bucher, G. E. & Bracken, G. K. (1979). The bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). An estimate of light and pheromone trap efficiency based on captures of newly emerged moths.—Can. Ent. 111, 977984.CrossRefGoogle Scholar
Deay, H. O. & Hartsock, J. G. (1961). The use of light traps to protect tobacco in southern Indiana from tobacco and tomato hornworms.—Proc. Indiana Acad. Sci. 70, 137.Google Scholar
Dirmhirn, I. (1961). Entomological studies from a high tower in Mpanga Forest, Uganda. III. Light intensity at different levels.—Trans. R. ent. Soc. Lond. 113, 270274.CrossRefGoogle Scholar
Dufay, C. (1964). Contribution a l'ètude du phototropisme des Lèpidoptéres noctuides.—Annls Sci. nat. Zool. Biol. Anim. (12) 6, 281406.Google Scholar
Fabry, C. (1927). Introduction gènèrale à la photomètrie.—178 pp. Edit. Rev. Opt. thèor. instr., Paris.Google Scholar
Glick, P. A. (1939). The distribution of insects, spiders, and mites in the air.—Tech. Bull. U.S. Dep. Agric. no. 673, 150 pp.Google Scholar
Hartsock, J. G. (1961). Relation of light intensity to insect response.—pp. 2632in Response of insects to induced light.—66 pp. Washington, D.C., Agric. Res. Serv., U.S. Dep. Agric. (ARS 20–10).Google Scholar
Hartstack, A. W. Jr, Hollingsworth, J. P. & Lindquist, D. A. (1968). A technique for measuring trapping efficiency of electric insect traps.—J. econ. Ent. 61, 546552.CrossRefGoogle Scholar
Heath, J. (1970). Insect light traps.—Leafl. Amat. Ent. Soc. no. 33, 15 pp.Google Scholar
Hienton, T. E. (1974). Summary of investigations of electric insect traps.—Tech. Bull. U.S. Dep. Agric. no. 1498, 136 pp.Google Scholar
Hollingsworth, J. P. (1961). Relation of wavelength to insect response.—pp. 925in Response of insects to induced light.—66 pp. Washington, D.C., Agric. Res. Serv., U.S. Dep. Agric. (ARS 20–10).Google Scholar
Hollingsworth, J. P. & Hartstack, A. W. Jr, (1972). Effect of components on insect light trap performance.—Trans. Am. Soc. agric. Engrs 15, 924927.Google Scholar
Hollingsworth, J. P., Hartstack, A. W. Jr, & Lindquist, D. A. (1968). Influence of near-ultraviolet output of attractant lamps on catches of insects by light traps.—J. econ. Ent. 61, 515521.CrossRefGoogle Scholar
Hsiao, H. S. (1972). Attraction of moths to light and to infrared radiation.–89 pp. San Francisco Press Ltd.Google Scholar
Kuiper, G. P. (1938). The magnitude of the sun, the stellar temperature scale, and bolometric corrections.—Astrophys. J. 88, 429471.CrossRefGoogle Scholar
Lumb, F. E. (1964). The influence of cloud on hourly amounts of total solar radiation to the sea surface.—Q. Jl R. met. Soc. 90, 4356, 493495.CrossRefGoogle Scholar
Pettit, E. & Nicholson, S. B. (1928). Stellar radiation measurements.—Astrophys. J. 68, 279308.CrossRefGoogle Scholar
Pettit, E. & Nicholson, S. B. (1930). Lunar radiation and temperatures.—Astrophys. J. 70, 102135.CrossRefGoogle Scholar
Pinchin, R. D. & Anderson, J. (1936). On the nocturnal activity of Tipulinae (Diptera) as measured by a light trap.—Proc. R. ent. Soc. Lond. (A) 11, 6978.Google Scholar
Plaut, H. N. (1971). Distance of attraction of moths of Spodoptera littoralis to BL radiation, and recapture of moths released at different distances of an ESA blacklight standard trap.—J. econ. Ent. 64, 14021404.CrossRefGoogle Scholar
Reifsnyder, W. E. & Lull, H. W. (1965). Radiant energy in relation to forests.—Tech. Bull. U.S. Dep. Agric. no. 1344, 111 pp.Google Scholar
Robertson, A. G. (1939). The nocturnal activity of crane-flies (Tipulinae) as indicated by captures in a light trap at Rothamsted.—J. Anim. Ecol. 8, 300322.CrossRefGoogle Scholar
Smith, J. S., Gentry, C. R., Edwards, G. W. & Blythe, J. L. (1975). Use of black-light traps to suppress lepidopteran insects on pecans.—Trans. Am. Soc. agric. Engrs 18, 707710.CrossRefGoogle Scholar
Stewart, P. A., Lam, J. J. Jr, & Hoffman, J. D. (1967). Activity of tobacco hornworm and corn earworm moths as determined by traps equipped with blacklight lamps.—J. econ. Ent. 60, 15201522.CrossRefGoogle Scholar
Taylor, L. R. (1974). Monitoring change in the distribution and abundance of insects.—Rep. Rothamsted exp. Stn 1973 (2), 202239.Google Scholar
Taylor, L. R. & Brown, E. S. (1972). Effects of light-trap design and illumination on samples of moths in the Kenya highlands.—Bull. ent. Res. 62, 91112.CrossRefGoogle Scholar
Taylor, J. G. & Deay, H. O. (1950). Electric lamps and traps in corn borer control.—Agric. Engng, St. Joseph, Mich. 31, 503505, 532.Google Scholar
Taylor, L. R., French, R. A. & Woiwod, I. P. (1978). The Rothamsted Insect Survey and the urbanization of land in Great Britain.—pp. 3165in Frankie, G. W. & Koehler, C. S. (Eds.). Perspectives in urban entomology.–417 pp. New York, Academic Press.CrossRefGoogle Scholar
Taylor, L. R., French, R. A., Woiwod, I. P., Dupuch, M. J. & Nicklen, J. (1981). Synoptic monitoring for migrant insect pests in Great Britain and Western Europe. I. Establishing expected values for species content, population stability and phenology of aphids and moths.—Rep. Rothamsted exp. Stn 1980 (2), 41104.Google Scholar
Thimijan, R. W. & Pickens, L. G. (1973). A method for predicting house fly attraction of electromagnetic radiant energy.—J. econ. Ent. 66, 95100.CrossRefGoogle ScholarPubMed
Williams, C. B. (1936). The influence of moonlight on the activity of certain nocturnal insects, particularly of the family Noctuidae, as indicated by a light trap.—Phil. Trans. R. Soc. (B) 226, 357389.CrossRefGoogle Scholar
Williams, C. B. (1948). The Rothamsted light trap.—Proc. R. ent. Soc. Lond. (A) 23, 8085.Google Scholar
Williams, C. B. (1951). Comparing the efficiency of insect traps.—Bull. ent. Res. 42, 513517.CrossRefGoogle Scholar
Williams, C. B., French, R. A. & Hosni, M. M. (1955). A second experiment on testing the relative efficiency of insect traps.—Bull. ent. Res. 46, 193204.CrossRefGoogle Scholar
Williams, C. B., Singh, B. P. & El Ziady, S. (1956). An investigation into the possible effects of moonlight on the activity of insects in the field.—Proc. R. ent. Soc. Lond. (A) 31, 135144.Google Scholar