Hostname: page-component-5b777bbd6c-6lqsf Total loading time: 0 Render date: 2025-06-19T06:38:30.708Z Has data issue: false hasContentIssue false

Assessing the predation dynamics of three coccinellid species on Myzus persicae (Sulzer): a functional response perspective

Published online by Cambridge University Press:  09 June 2025

Chander Singh*
Affiliation:
Department of Entomology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, HP, India
Subhash Chander Verma
Affiliation:
Department of Entomology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, HP, India
Prem Lal Sharma
Affiliation:
Department of Entomology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, HP, India
Vishav Gaurav Singh Chandel
Affiliation:
Department of Entomology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, HP, India
Rajeshwar Singh Chandel
Affiliation:
Department of Entomology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, HP, India
Nikita Chauhan
Affiliation:
School of Agriculture, Graphic Era Hill University, Dehradun, UK, India
Anshuman Semwal
Affiliation:
Department of Entomology, Dr Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, HP, India
*
Corresponding author: Chander Singh; Email: thakurchandersingh008@gmail.com

Abstract

Understanding of predators functional responses is critical in assessing their efficiency as biological control agents. This study investigates the functional responses of three coccinellid predators Scymnus posticalis Sicard (Coleoptera: Coccinellidae), Platynaspis saundersi Crotch (Coleoptera: Coccinellidae), and Pharoscymnus horni Weise (Coleoptera: Coccinellidae) against varying densities of the prey aphid, Myzus persicae (Hemiptera: Aphididae) under controlled conditions (25 ± 1°C temperature, 70 ± 5% relative humidity and 14 L:10D photoperiod). Predation trials across different prey densities were performed with these adult coccinellid predators. Logistic regression analysis confirmed a Type II functional response for all the three species used in the experiments. Among the three, S. posticalis showed a superior predatory efficiency, with the highest attack rate (a) (0.0994 h−1), shortest handling time (Th) (0.5016 h) and a maximum theoretical predation rate (K) of 48.76 aphids. P. saundersi and P. horni showed lower predatory parameters, positioning S. posticalis as the most efficient predator. These findings underscore S. posticalis as a promising candidate for biological control of M. persicae, with a clear advantage in predation metrics over P. saundersi (a = 0.0876 h−1; Th = 0.5193 h; K = 48.27 aphids) and P. horni (a = 0.0695 h−1; Th = 0.5316 h; K = 47.97 aphids). However, further field validation is essential to assess its real-world efficacy, considering environmental variability and complex ecological interactions.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abraços-Duarte, G, Ramos, S, Valente, F, Borges da Silva, E and Figueiredo, E (2021) Functional response and predation rate of Dicyphus cerastii Wagner (Hemiptera: Miridae). Insects 12(6), 530.10.3390/insects12060530CrossRefGoogle ScholarPubMed
Abrams, PA and Ginzburg, LR (2000) The nature of predation: prey dependent, ratio dependent or neither? Trends in Ecology and Evolution 15(8), 337341.10.1016/S0169-5347(00)01908-XCrossRefGoogle ScholarPubMed
Ali, J (2023) The Peach Potato Aphid (Myzus Persicae): Ecology and Management. 1st, Boca Raton: CRC Press, 132. doi:10.1201/9781003400974.CrossRefGoogle Scholar
Ali, J, Bayram, A, Mukarram, M, Zhou, F, Karim, MF, Hafez, MMA, Mahamood, M, Yusuf, AA, King, PJH, Adil, MF and Ma, Z (2023) Peach–potato aphid Myzus persicae: Current management strategies, challenges, and proposed solutions. Sustainability 15(14), 11150.10.3390/su151411150CrossRefGoogle Scholar
Bass, C, Puinean, AM, Andrews, M, Cutler, P, Daniels, M, Elias, J, Paul, VL, Crossthwaite, AJ, Denholm, I, Field, LM and Foster, SP (2011) Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neuroscience 12, 111.10.1186/1471-2202-12-51CrossRefGoogle ScholarPubMed
Bayoumy, MH (2011) Foraging behavior of the coccinellid Nephus includens (Coleoptera: Coccinellidae) in response to Aphis gossypii (Hemiptera: Aphididae) with particular emphasis on larval parasitism. Environmental Entomology 40(4), 835843.10.1603/EN10298CrossRefGoogle ScholarPubMed
Begon, M and Townsend, CR (2021) Ecology: From Individuals to Ecosystems. 5th, UK: John Wiley & Sons, 864.Google Scholar
Blackman, RL and Eastop, VF (2000) Aphids on the World’s Plants: An Identification and Information Guide. Chichester. England: John Wiley & Sons, 466.Google Scholar
Bolker, BM (2008) Ecological Models and Data in R. US: Princeton University Press, 408.Google Scholar
Cabral, S, Soares, AO and Garcia, P (2009) Predation by Coccinella undecimpunctata L.(Coleoptera: Coccinellidae) on Myzus persicae Sulzer (Homoptera: Aphididae): Effect of prey density. Biological Control 50(1), 2529.10.1016/j.biocontrol.2009.01.020CrossRefGoogle Scholar
Chauhan, N (2024) Studies on arthropod pests of apple and their natural enemies in different farming systems. Ph.D. Thesis. Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Nauni, Solan, HP. 383p.Google Scholar
Chauhan, N, Singh, C, Verma, SC, Sharma, PL, Chandel, RS, Chandel, VGS, Sharma, V, Semwal, A and Kalia, L (2024) Biology and functional response of Oenopia sauzeti (Mulsant) on peach leaf curl aphid, Brachycaudus helichrysi (Kaltenbach). Phytoparasitica 52(1), 2. doi:10.1007/s12600-023-01114-6.CrossRefGoogle Scholar
Fernández-Arhex, V and Corley, JC (2003) The functional response of parasitoids and its implications for biological control. Biocontrol Science and Technology 13, 403413.10.1080/0958315031000104523CrossRefGoogle Scholar
Gaikwad, MB, Verma, SC, Sharma, PL, Chandel, RS, Challa, N, Yankit, P and Kedar, SC (2022) Functional response and predatory potential of coccinellid predator, Oenopia kirbyi Mulsant (Coccinellidae: Coleoptera) on rose aphid, Macrosiphum rosae L. (Aphididae: Hemiptera). International Journal of Tropical Insect Science 42(3), 22332239.10.1007/s42690-022-00745-2CrossRefGoogle Scholar
Hameed, Y, Hamid, MF, Ahmad, N, Sarmad, M, Zaka, SM, Saeed, Q, Khan, MAZ, Abbas, K, Shahzaib, M and Zakria, M (2021) Influence of three aphid species for determining the stage-specific functional response of the coccinellid beetle Menochilus sexmaculatus (F.). Journal of the Kansas Entomological Society 93(3), 185195.10.2317/0022-8567-93.3.185CrossRefGoogle Scholar
Hassell, MP (1978) The Dynamics of Arthropod Predator-prey Systems. New Jersey: Princeton University Press, 237.Google ScholarPubMed
Hassell, MP (2000) The Spatial and Temporal Dynamics of Host-Parasitoid Interactions. Oxford, England: Oxford University Press, 208.10.1093/oso/9780198540892.001.0001CrossRefGoogle Scholar
Hassell, MP, Lawton, JH and Beddington, JR (1977) Sigmoid functional responses by invertebrate predators and parasitoids. Journal of Animal Ecology 46, 249262.10.2307/3959CrossRefGoogle Scholar
Holling, CS (1959a) Some characteristics of simple types of predation and parasitism. The Canadian Entomologist 91(7), 385398.10.4039/Ent91385-7CrossRefGoogle Scholar
Holling, CS (1959b) The components of predation as revealed by a study of small-mammal predation of the European pine sawfly. The Canadian Entomologist 91(5), 293320.10.4039/Ent91293-5CrossRefGoogle Scholar
IBM Corp. Released (2020) IBM SPSS Statistics for Windows, Version 27.0. Armonk, NY: IBM Corp.Google Scholar
Işikber, AA (2005) Functional response of two coccinellid predators, Scymnus levaillanti and Cycloneda sanguinea, to the cotton aphid, Aphis gossypii. Turkish Journal of Agriculture and Forestry 29(5), 347355.Google Scholar
Jalali, MA, Tirry, L and De Clercq, P (2010) Effect of temperature on the functional response of Adalia bipunctata to Myzus persicae. BioControl 55, 261269.10.1007/s10526-009-9237-6CrossRefGoogle Scholar
Jalali, MA and Ziaaddini, M (2017) Effects of host plant morphological features on the functional response of Adalia bipunctata (Coleoptera: Coccinellidae) to Myzus persicae (Hemiptera: Aphididae). International Journal of Pest Management 63(4), 309315.10.1080/09670874.2016.1258502CrossRefGoogle Scholar
Jeschke, JM, Kopp, M and Tollrian, R (2002) Predator functional responses: discriminating between handling and digesting prey. Ecological Monographs 72(1), 95112.10.1890/0012-9615(2002)072[0095:PFRDBH]2.0.CO;2CrossRefGoogle Scholar
Jeschke, JM, Kopp, M and Tollrian, R (2004) Consumer-food systems: why type I functional responses are exclusive to filter feeders. Biological Reviews 79(2), 337349.10.1017/S1464793103006286CrossRefGoogle ScholarPubMed
Khan, MAZ, Liang, Q, Maria, MSM and Liu, TX (2016) Effect of temperature on functional response of Aphidius gifuensis (Hymenoptera: Braconidae) parasitizing Myzus persicae (Hemiptera: Aphididae). Florida Entomologist 99(4), 696702.10.1653/024.099.0419CrossRefGoogle Scholar
Kumari, D, Verma, SC and Sharma, PL (2020) Biology, feeding potential and functional response of Coccinella septempunctata L. against Aphis gossypii Glover infesting cucumber. Journal of Entomology and Zoology Studies 8(1), 631636.Google Scholar
Kumari, D, Verma, SC, Sharma, PL and Banshtu, T (2021a) Biology and foraging behaviour of Oenopia kirbyi Mulsant (Coleoptera: Coccinellidae) on melon aphid, Aphis gossypii Glover. Journal of Entomology and Zoology Studies 9(1), 14441448.Google Scholar
Kumari, S, Suroshe, SS, Kumar, D, Budhlakoti, N and Yana, V (2021b) Foraging behaviour of Scymnus coccivora Ayyar against cotton mealybug Phenacoccus solenopsis Tinsley. Saudi Journal of Biological Sciences 28(7), 37993805.10.1016/j.sjbs.2021.03.051CrossRefGoogle Scholar
Liu, F and Zeng, F (2014) The influence of nutritional history on the functional response of Geocoris pallidipennis to its prey, Myzus persicae. Bulletin of Entomological Research 104(6), 702706.10.1017/S0007485314000509CrossRefGoogle ScholarPubMed
Mocq, J, Soukup, PR, Näslund, J and Boukal, DS (2021) Disentangling the nonlinear effects of habitat complexity on functional responses. Journal of Animal Ecology 90(6), 15251537.10.1111/1365-2656.13473CrossRefGoogle ScholarPubMed
Murdoch, WW (1969) Switching in general predators: experiments on predator specificity and stability of prey populations. Ecological Monographs 39(4), 335354.10.2307/1942352CrossRefGoogle Scholar
Murdoch, WW and Oaten, A (1975) Predation and population stability. Advances in Ecological Research 9, 1131.10.1016/S0065-2504(08)60288-3CrossRefGoogle Scholar
Novak, M (2010) Estimating interaction strengths in nature: experimental support for an observational approach. Ecology 91(8), 23942405.10.1890/09-0275.1CrossRefGoogle ScholarPubMed
Oaten, A and Murdoch, WW (1975) Functional response and stability in predator-prey systems. The American Naturalist 109(967), 289298.10.1086/282998CrossRefGoogle Scholar
Omkar, PA (2005) Functional responses of coccinellid predators: an illustration of a logistic approach. Journal of Insect Science 5(1), 56.Google Scholar
Ovadia, O and Schmitz, OJ (2002) Linking individuals with ecosystems: experimentally identifying the relevant organizational scale for predicting trophic abundances. Proceedings of the National Academy of Sciences 99(20):1292712931.10.1073/pnas.192245499CrossRefGoogle Scholar
Poorani, J (2002) An annotated checklist of the Coccinellidae (Coleoptera) (excluding Epilachninae) of the Indian subregion. Oriental Insects 36(1), 307383.10.1080/00305316.2002.10417335CrossRefGoogle Scholar
Ramzan, Z and Khursheed, S (2023) Predatory potential and functional response of Coccinella undecimpunctata Linnaeus (Coleoptera: Coccinellidae) on Brevicoryne brassicae (Linnaeus) (Homoptera: Aphididae). International Journal of Pest Management. doi:10.1080/09670874.2023.2234330.CrossRefGoogle Scholar
Ranjbar, F, Jalali, MA, Ahmadi, Z, Pons, X, Levi-Mourao, A and Ugine, T (2024) Comparison of the predatory impacts of indigenous and adventive ladybeetle species (Coleoptera: Coccinellidae) using a functional response approach. Journal of Plant Diseases and Protection. doi:10.1007/s41348-024-00936-8.CrossRefGoogle Scholar
Real, LA (1977) The kinetics of functional response. The American Naturalist 111(978), 289300.10.1086/283161CrossRefGoogle Scholar
Rogers, D (1972) Random search and insect population models. Journal of Animal Ecology 41, 369383.10.2307/3474CrossRefGoogle Scholar
Sabaghi, R, Hosseini, R and Sahragard, A (2011) Functional and numerical responses of Scymnus syriacus Marseul (Coleoptera: Coccinellidae) to the black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae) under laboratory conditions. Journal of Plant Protection Research 51(4), 423428.10.2478/v10045-011-0070-4CrossRefGoogle Scholar
Sarmento, RA, Pallini, A, Venzon, M, Offd, S, Molina-Rugama, AJ and Oliveira, CLD (2007) Functional response of the predator Eriopis connexa (Coleoptera: Coccinellidae) to different prey types. Brazilian Archives of Biology and Technology 50, 121126.10.1590/S1516-89132007000100014CrossRefGoogle Scholar
Schenk, D and Bacher, S (2002) Functional response of a generalist insect predator to one of its prey species in the field. Journal of Animal Ecology 71(3), 524531.10.1046/j.1365-2656.2002.00620.xCrossRefGoogle Scholar
Schmitz, OJ (2008) Herbivory from individuals to ecosystems. Annual Review of Ecology, Evolution, and Systematics 39, 133152.10.1146/annurev.ecolsys.39.110707.173418CrossRefGoogle Scholar
Seko, T and Miura, K (2008) Functional response of the lady beetle Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) on the aphid Myzus persicae (Sulzer) (Homoptera: Aphididae). Applied Entomology and Zoology 43(3), 341345.10.1303/aez.2008.341CrossRefGoogle Scholar
Sentis, A, Hemptinne, JL and Brodeur, J (2017) Non-additive effects of simulated heat waves and predators on prey phenotype and transgenerational phenotypic plasticity. Global Change Biology 23(9), 45964608.10.1111/gcb.13674CrossRefGoogle ScholarPubMed
Sharma, PL, Chauhan, U and Sharma, KC (2015) Studies on the diversity of predatory coccinellid beetles (Coleoptera) in different agro-climatic zones of Himachal Pradesh. The Bioscan 10(3), 981986.Google Scholar
Sharma, PL, Verma, SC, Chandel, RS, Chandel, RPS and Thakur, P (2017a) An inventory of the predatory coccinellidae of Himachal Pradesh, India. Journal of Entomology and Zoology Studies 5(6), 25032507.Google Scholar
Sharma, PL, Verma, SC, Chandel, RS, Shah, MA and Gavkare, O (2017b) Functional response of Harmonia dimidiata (Fab.) to melon aphid, Aphis gossypii glover under laboratory conditions. Phytoparasitica 45, 373379.10.1007/s12600-017-0599-5CrossRefGoogle Scholar
Sharma, P, Verma, SC, Sharma, PL and Chandel, RS (2022) Host stage preference, functional response and biological parameters of Aphelinus asychis walker on Myzus persicae (Sulzer) in bell pepper. Indian Journal of Ecology 49(5), 17641769.Google Scholar
Sih, A (1987) Predators and prey lifestyles: an evolutionary and ecological overview. In Kerfoot, WC, and Sih, A (eds.), Predation: Direct and Indirect Impacts on Aquatic Communities. Lebanon, New Hampshire: University Press of New England, 203224.Google Scholar
Sih, A (2005) Predator-prey space use as an emergent outcome of a behavioral response race. In Barbosa, P, and Castellanos, I (eds.), Ecology of Predator-prey Interactions. New York: Oxford University Press, 240255.10.1093/oso/9780195171204.003.0011CrossRefGoogle Scholar
Singh, KS, Cordeiro, EM, Troczka, BJ, Pym, A, Mackisack, J, Mathers, TC, Duarte, A, Legeai, F, Robin, S, Bielza, P and Burrack, HJ (2021) Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus persicae. Communications Biology 4(1), 847. doi:10.1038/s42003-021-02373-x.CrossRefGoogle ScholarPubMed
Skalski, GT and Gilliam, JF (2001) Functional responses with predator interference: Viable alternatives to the Holling type II model. Ecology 82(11), 30833092.10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2CrossRefGoogle Scholar
Solomon, ME (1949) The natural control of animal populations. Journal of Animal Ecology 18(1), 135.10.2307/1578CrossRefGoogle Scholar
Toscano, BJ and Griffen, BD (2014) Trait-mediated functional responses: Predator behavioral type mediates prey consumption. Journal of Animal Ecology 83(6), 14691477.10.1111/1365-2656.12236CrossRefGoogle ScholarPubMed
Van Emden, HF and Harrington, R (2017) Aphids as Crop Pests. 2nd, Wallingford, Oxfordshire, UK: CABI Publishing, 686.10.1079/9781780647098.0000CrossRefGoogle Scholar
Yu, XL, Tang, R, Xia, PL, Wang, B, Feng, Y and Liu, TX (2020) Effects of prey distribution and heterospecific interactions on the functional response of Harmonia axyridis and Aphidius gifuensis to Myzus persicae. Insects 11(6), 325.10.3390/insects11060325CrossRefGoogle ScholarPubMed