Skip to main content Accessibility help
Hostname: page-component-684899dbb8-gbqfq Total loading time: 0.562 Render date: 2022-05-23T12:11:28.336Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae)

Published online by Cambridge University Press:  27 March 2009

M. De Meyer*
Royal Museum for Central Africa, Entomology Section, Tervuren, B-3080Tervuren, Belgium
M.P. Robertson
Department of Zoology and Entomology, University of Pretoria, Pretoria, 0001, South Africa
M.W. Mansell
Department of Zoology and Entomology, University of Pretoria, Pretoria, 0001, South Africa United States Department of Agriculture, APHIS, Pretoria, 0001, South Africa
S. Ekesi
International Centre of Insect Physiology and Ecology, PO Box 30772-00100, GPO, Nairobi, Kenya
K. Tsuruta
Moji Plant Protection Station, MAFF, Nishikaigan, Moji-ku, Kitakyushu, 801-0841, Japan
W. Mwaiko
Ministry of Agriculture and Food Security, Plant Health Services, P.O.Box 9071, Dar es Salaam, Tanzania
J-F Vayssières
CIRAD, UPR Production Fruitière, Montpellier, F-34398France; IITA, Cotonou, Bénin
A.T. Peterson
Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas66045USA
*Author for correspondence Fax: +32 (0)2 7695695 E-mail:


Two correlative approaches to the challenge of ecological niche modeling (genetic algorithm, maximum entropy) were used to estimate the potential global distribution of the invasive fruit fly, Bactrocera invadens, based on associations between known occurrence records and a set of environmental predictor variables. The two models yielded similar estimates, largely corresponding to Equatorial climate classes with high levels of precipitation. The maximum entropy approach was somewhat more conservative in its evaluation of suitability, depending on thresholds for presence/absence that are selected, largely excluding areas with distinct dry seasons; the genetic algorithm models, in contrast, indicate that climate class as partly suitable. Predictive tests based on independent distributional data indicate that model predictions are quite robust. Field observations in Benin and Tanzania confirm relationships between seasonal occurrences of this species and humidity and temperature.

Research Paper
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Anderson, R.P., Gomez-Laverde, M. & Peterson, A.T. (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Global Ecology and Biogeography 11, 131141.CrossRefGoogle Scholar
Anderson, R.P., Lew, D. & Peterson, A.T. (2003) Evaluating predictive models of species' distributions: criteria for selecting optimal models. Ecological Modelling 162, 211232.CrossRefGoogle Scholar
Broennimann, O., Treier, U.A., Müller-Schärer, H., Thuiller, W., Peterson, A.T. & Guisan, A. (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters 10, 701709.CrossRefGoogle ScholarPubMed
Cantrell, B., Chadwick, B. & Cahill, A. (2002) Fruit Fly Fighters – Eradication of the Papaya Fruit Fly. 200Collingwood, Australia, Csiro.Google Scholar
Coetzee, M. (2004) Distribution of the African malaria vectors of the Anopheles gambiae complex. American Journal of Tropical Medicine and Hygiene 70, 103104.Google ScholarPubMed
Colautti, R.I., Ricciardi, A., Grigorovich, I.A. & MacIsaac, H.J. (2004) Is invasion success explained by the enemy release hypothesis? Ecology Letters 7, 721733.CrossRefGoogle Scholar
Copeland, R.C., Wharton, R.A., Luke, Q., De Meyer, M., Lux, S., Zenz, N., Machera, P. & Okumu, M. (2006) Geographic distribution, host fruit, and parasitoids of African fruit fly pests Ceratitis anonae, Ceratitis cosyra, Ceratitis fasciventris, and Ceratitis rosa (Diptera: Tephritidae) in Kenya. Annals of the Entomological Society of America 99, 262278.CrossRefGoogle Scholar
De Meyer, M., Mohamed, S. & White, I.M. (2007) Invasive fruit fly pests in Africa. (accessed 5 February 2008).Google Scholar
De Meyer, M., Robertson, M.P., Peterson, A.T. & Mansell, M.W. (2008) Ecological niches and potential geographical distributions of Mediterranean fruit fly (Ceratitis capitata) and Natal fruit fly (Ceratitis rosa). Journal of Biogeography 35, 270281.Google Scholar
Dowell, R.V. & Wange, L.K. (1986) Process analysis and failure avoidance in fruit fly programs. pp. 4365in Mangel, M., Carey, J.R. & Plant, R.E. (Eds) Pest Control. New York, NATO ASI Series, Springer-Verlag.Google Scholar
Drew, R.A.I. (2004) Biogeography and speciation in the Dacini (Diptera: Tephritidae: Dacinae). Bishop Museum Bulletin in Entomology 12, 165178.Google Scholar
Drew, R.A.I. & Hancock, D.L. (1994) The Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae: Dacinae) in Asia. Bulletin of Entomological Research, supplement 2, 168.CrossRefGoogle Scholar
Drew, R.A.I, Tsuruta, K. & White, I.M. (2005) A new species of pest fruit fly (Diptera: Tephritidae: Dacinae) from Sri Lanka and Africa. African Entomology 13, 149154.Google Scholar
Drew, R.A.I., Romig, M.C. & Dorji, C. (2007) Records of Dacine fruit flies and new species of Dacus (Diptera: Tephritidae) in Bhutan. Raffles Bulletin of Zoology 55, 121.Google Scholar
Drew, R.A.I., Raghu, S. & Halcoop, P. (2008) Bridging the morphological and biological species concepts: studies on the Bactrocera dorsalis (Hendel) complex (Diptera: Tephritidae: Dacinae) in South-east Asia. Biological Journal of the Linnean Society 93, 217226.CrossRefGoogle Scholar
Duyck, P.F., David, P. & Quilici, S. (2004) A review of relationships between interspecific competition and invasions in fruit flies (Diptera: Tephritidae). Ecological Entomology 29, 511520.CrossRefGoogle Scholar
Duyck, P.F., David, P. & Quilici, S. (2007) Can more K-selected species be better invaders? A case study of fruit flies in La Réunion. Diversity and Distributions 13, 535543.CrossRefGoogle Scholar
Ekesi, S., Nderitu, P.W. & Rwomushana, I. (2006) Field infestation, life history and demographic parameters of the fruit fly Bactrocera invadens (Diptera: Tephritidae) in Africa. Bulletin of Entomological Research 96, 379386.Google Scholar
Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.McC., Peterson, A.T., Phillips, S.J., Richardson, K., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S. & Zimmermann, N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129151.CrossRefGoogle Scholar
Enkerlin, W. & Mumford, J.D. (1997) Economic evaluation of three alternative methods for control of the Mediterranean fruit fly (Diptera: Tephritidae) in Israel, Palestinian Territories, and Jordan. Journal of Economic Entomology 90, 10661072.CrossRefGoogle Scholar
Fielding, A.H. & Bell, J.F. (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 3849.CrossRefGoogle Scholar
Fitzpatrick, M.C., Weltzin, J.F., Sanders, N.J. & Dunn, R. (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Global Ecology and Biogeography 16, 2433.CrossRefGoogle Scholar
Fletcher, B.S. (1989) Temperature-development rate relationships of immature stages and adult of tephritid fruit flies. pp. 273289in Robinson, A.S. & Hooper, G. (Eds) Fruit Flies: Their Biology, Natural Enemies and Control. Amsterdam, The Netherlands, Elsevier.Google Scholar
Grinnell, J. (1917) Field tests of theories concerning distributional control. American Naturalist 51, 115128.CrossRefGoogle Scholar
Grinnell, J. (1924) Geography and evolution. Ecology 5, 225229.CrossRefGoogle Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. (2006) World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 15, 259263.CrossRefGoogle Scholar
Lux, S.A., Copeland, R.S., White, I.M., Manrakhan, A. & Billah, M.K. (2003) A new invasive fruit fly species from the Bactrocera dorsalis (Hendel) group detected in East Africa. Insect Science and its Application 23, 355360.Google Scholar
Martínez-Meyer, E., Peterson, A.T. & Hargrove, W.W. (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography 13, 305314.CrossRefGoogle Scholar
Morrison, L.W., Porter, S.D., Daniels, E. & Korzukhin, M.D. (2004) Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biological Invasions 6, 183191.CrossRefGoogle Scholar
Mwatawala, M.W., White, I.M., Maerere, A.P., Senkondo, F.J. & De Meyer, M. (2004) A new invasive Bactrocera species (Diptera: Tephritidae) in Tanzania. African Entomology 12, 154156.Google Scholar
Mwatawala, M.W., De Meyer, M., Makundi, R.H. & Maerere, A.P. (2006a) Biodiversity of fruit flies (Diptera, Tephritidae) at orchards in different agro-ecological zones of the Morogoro region, Tanzania. Fruits 61, 321332CrossRefGoogle Scholar
Mwatawala, M.W., De Meyer, M., Makundi, R.H. & Maerere, A.P. (2006b) Seasonality and host utilization of the invasive fruit fly, Bactrocera invadens (Dipt., Tephritidae) in central Tanzania. Journal of Applied Entomology 130, 530537.CrossRefGoogle Scholar
Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34, 102117.CrossRefGoogle Scholar
Peterson, A.T. (2001) Predicting species' geographic distributions based on ecological niche modeling. The Condor 103, 599605.CrossRefGoogle Scholar
Peterson, A.T. (2003) Predicting the geography of species' invasions via ecological niche modeling. Quarterly Review of Biology 78, 419433.CrossRefGoogle ScholarPubMed
Peterson, A.T. (2005) Predicting potential geographic distributions of invading species. Current Science 89, 9.Google Scholar
Peterson, A.T. & Nakazawa, Y. (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography 17, 135144.Google Scholar
Peterson, A.T. & Vieglais, D.A. (2001) Predicting species invasions using ecological niche modeling. BioScience 51, 363371.CrossRefGoogle Scholar
Peterson, A.T., Soberón, J. & Sánchez-Cordero, V. (1999) Conservatism of ecological niches in evolutionary time. Science 285, 12651267.CrossRefGoogle ScholarPubMed
Peterson, A.T., Papeş, M. & Eaton, M. (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30, 550560.CrossRefGoogle Scholar
Peterson, A.T., Papeş, M. & Soberón, J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modeling 213, 6372.CrossRefGoogle Scholar
Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modeling 190, 231259.CrossRefGoogle Scholar
Pouilles-Duplaix, A. (2007) Edito. La lutte régionale contres les mouches des fruits et legumes en Afrique de l'Ouest. COLEACP/CIRAD Lettre d'information 1, 1.Google Scholar
Raxworthy, C.J., Martínez-Meyer, E., Horning, N., Nussbaum, R.A., Schneider, G.E., Ortega-Huerta, M.A. & Peterson, A.T. (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426, 837841.CrossRefGoogle ScholarPubMed
Rice, N., Martınez-Meyer, E. & Peterson, A.T. (2003) Ecological niche differentiation in the Aphelocoma jays: a phylogenetic perspective. Biological Journal of the Linnean Society 80, 369383.CrossRefGoogle Scholar
Richardson, D.M. & van Wilgen, B.M. (2004) Invasive alien plants in South Africa: how well do we understand the ecological impacts? South African Journal of Science 100, 4552.Google Scholar
Rwomushana, I., Ekesi, S., Gordon, I. & Ogol, C.K.P.O. (2008) Host plant and host plant preference studies for Bactrocera invadens (Diptera: Tephritidae) in Kenya, a new invasive fruit fly species in Africa. Annals of the Entomological Society of America 101, 331340.CrossRefGoogle Scholar
Sithanantham, S., Selvaraj, P. & Boopathi, T. (2006) The fruit fly Bactrocera invadens (Tephritidae: Diptera) new to India. Pestology 30, 3637.Google Scholar
Soberón, J. & Peterson, A.T. (2005) Interpretation of models of fundamental ecological niches and species' distributional areas. Biodiversity Informatics 2, 110.CrossRefGoogle Scholar
Steiner, F.M., Schlick-Steiner, B.C., Van der Wal, J., Reuther, K.D., Christian, E., Stauffer, C., Suarez, A.V., Williams, S.E. & Crozier, R.H. (2008) Combined modeling of distribution and niche in invasion biology: a case study of two invasive Tetramorium ant species. Diversity and Distributions 14, 538545.CrossRefGoogle Scholar
Stephens, A.E.A., Kriticos, D.J. & Leriche, A. (2007) The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bulletin of Entomological Research 97, 369378.CrossRefGoogle Scholar
Stockwell, D.R.B. & Peters, D.P. (1999) The GARP modeling system: Problems and solutions to automated spatial prediction. International Journal of Geographic Information Systems 13, 143158.CrossRefGoogle Scholar
Stockwell, D.R.B. & Peterson, A.T. (2002) Effects of sample size on accuracy of species distribution models. Ecological Modelling 148, 113.CrossRefGoogle Scholar
Sutherst, R.W. (2003) Prediction of species geographical ranges. Journal of Biogeography 30, 805816.CrossRefGoogle Scholar
Sutherst, R.W., Collyer, B.S. & Yonow, T. (2000) The vulnerability of Australian horticulture to the Queensland fruit fly, Bactrocera (Dacus) tryoni, under climate change. Australian Journal of Agricultural Research 51, 467480.CrossRefGoogle Scholar
Thompson, F.C. (Ed.) (1999) Fruit fly expert identification system and systematic information database. Myia, 9, ix+524 pp.Google Scholar
Thuiller, W., Richardson, D.M., Pysek, P., Midgley, G.F., Hughes, G.O. & Rouget, M. (2005) Niche-based modeling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11, 22342250.CrossRefGoogle Scholar
USDA/APHIS (2000) Cooperative Carambola fruit fly Eradication Program. Environmental Assessment, December 2000. (accessed July 2004).Google Scholar
Vargas, R.I., Chang, H.B.C., Komura, M. & Kawamoto, D. (1987) Mortality, stadial duration, and weight loss in three species of mass-reared fruit fly pupae (Diptera: Tephritidae) held with and without vermiculite at selected relative humidities. Journal of Economic Entomology 80, 972974.CrossRefGoogle Scholar
Vargas, R.I., Stark, J.D & Nishida, T. (1989) Abundance, distribution and dispersion indices of the oriental fruit fly and melon fly (Diptera: Tephritidae) on Kauai, Hawaiian Islands. Journal of Economic Entomology 82, 16091615.CrossRefGoogle Scholar
Vargas, R.I., Stark, J.D. & Nishida, T. (1990) Population dynamics, habitat preference, and seasonal distribution patterns of oriental fruit fly and melon fly (Diptera: Tephritidae) in an agricultural area. Environmental Entomology 19, 18201828.CrossRefGoogle Scholar
Vayssières, J.F. (2004) Rapport de mission au Sénégal du 11 au 20 Décembre 2004. COLEACP-PIP. 14 +annexes.Google Scholar
Vayssières, J.F. (2007a) Edito. La lutte régionale contres les mouches des fruits et légumes en Afrique de l'Ouest. COLEACP/CIRAD Lettre d'information 1, 3.Google Scholar
Vayssières, J.F. (2007b) Edito. La lutte régionale contres les mouches des fruits et légumes en Afrique de l'Ouest. COLEACP/CIRAD Lettre d'information 1, 2.Google Scholar
Vayssières, J.F. & Kalabane, S. (2000) Inventory and fluctuations of the catches of Diptera Tephritidae associated with mangoes in Coastal Guinea. Fruits 55, 259270.Google Scholar
Vayssières, J.F., Sanogo, F. & Noussourou, M. (2004) Inventaire des espèces de mouches des fruits (Diptera: Tephritidae) inféodées au manguier au Mali et essais de lutte raisonnée. Fruits 59, 114.CrossRefGoogle Scholar
Vayssières, J.F., Goergen, G., Lokossou, O., Dossa, P. & Akponon, C. (2005) A new Bactrocera species in Benin among mango fruit fly (Diptera: Tephritidae) species. Fruits 60, 371377.CrossRefGoogle Scholar
Vera, M.T., Rodriguez, R., Segura, D.F., Cladera, J.L. & Sutherst, R.W. (2002) Potential geographical distribution of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), with emphasis on Argentina and Australia. Environmental Entomology 31, 10091022.CrossRefGoogle Scholar
Welk, E., Schubert, K. & Hoffmann, M.H. (2002) Present and potential distribution of invasive garlic mustard (Alliaria petiolata) in North America. Diversity and Distributions 8, 219233.CrossRefGoogle Scholar
White, I.M. (2006) Taxonomy of the Dacina (Diptera: Tephritidae) of Africa and the Middle East. African Entomology Memoir 2, 1156.Google Scholar
White, I.M. & Elson-Harris, M.M. (1992) Fruit Flies of Economic Significance: Their Identification and Bionomics. 601London, CAB International.Google Scholar
White, I.M., De Meyer, M. & Stonehouse, J. (2001) A review of the native and introduced fruit flies (Diptera, Tephritidae) in the Indian Ocean Islands of Mauritius, Réunion, Rodrigues and Seychelles. pp 1521in Price, N.S. & Seewooruthun, I. (Eds) Proceedings of the Indian Ocean Commission Regional Fruit Fly Symposium. Indian Ocean Commission, 5–9th June 2000, Mauritius.Google Scholar
Wiens, J.J. & Graham, C.H. (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Systematics and Evolution 36, 519539.CrossRefGoogle Scholar
Yonow, T. & Sutherst, R.W. (1998) The geographical distribution of the Queensland fruit fly, Bactrocera (Dacus) tryoni, in relation to climate. Australian Journal of Agricultural Research, 49, 935953.Google Scholar
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae)
Available formats

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae)
Available formats

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Ecological niche and potential geographic distribution of the invasive fruit fly Bactrocera invadens (Diptera, Tephritidae)
Available formats

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *