Published online by Cambridge University Press: 10 May 2016
The southern harvester termite, Microhodotermes viator, is ecologically important due to its nutrient cycling activities and trophic interactions. Additionally, M. viator appears to have very long-lived colonies, which amplifies their effect on the environment. In order to estimate the longevity of a colony it is necessary to understand colony genetic structure. However, intra- and intercolonial genetic structure and levels of relatedness have not yet been examined in this species, likely due to a lack of microsatellite markers that effectively hybridize in this species. Here we describe the identification and characterization of seven microsatellite loci for M. viator, using an enriched approach and a preliminary test of their suitability for studies of fine-scale population genetic structure. Seven polymorphic loci were identified, none of which deviated from Hardy–Weinberg equilibrium. The loci had an average of 5.8 alleles per locus (range: 2–14) and an overall mean heterozygosity of 0.51 ± 0.3. Across all loci, population level pairwise F ST values showed significant genetic differentiation. The loci described and preliminary genetic data presented here provide an invaluable tool for future studies of population structure and longevity in M. viator colonies.