Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-fnprw Total loading time: 0.485 Render date: 2022-08-17T10:59:33.343Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Resolving the taxonomic status of biocontrol agents belonging to the Aphidius eadyi species group (Hymenoptera: Braconidae: Aphidiinae): an integrative approach

Published online by Cambridge University Press:  18 July 2018

A. Petrović*
Affiliation:
Institute of Zoology, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
M. Mitrović
Affiliation:
Department of Plant Pests, Institute for Plant Protection and Environment, Banatska 33, 11080 Zemun, Serbia
M.E. Ghaliow
Affiliation:
Institute of Zoology, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia Department of Biology, Faculty of Education, Misrata University, Zliten, P.O. Box 215, Misrata, Libya
A. Ivanović
Affiliation:
Institute of Zoology, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
N.G. Kavallieratos
Affiliation:
Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str., 11855, Athens, Attica, Greece
P. Starý
Affiliation:
Laboratory of Aphidology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic
Ž. Tomanović
Affiliation:
Institute of Zoology, University of Belgrade-Faculty of Biology, Studentski trg 16, 11000 Belgrade, Serbia
*
*Author for correspondence Phone: +381 11 2187 266 Fax: +381 11 2638 500 E-mail: andjeljko@bio.bg.ac.rs

Abstract

Species that belong to the Aphidius eadyi group have been used as biocontrol agents against Acyrthosiphon pisum worldwide. However, despite their extensive use, there are still gaps in our knowledge about their taxonomy and distribution. In this study, we employed an integrative taxonomic approach by combining genetic analyses (mtDNA COI barcoding) with standard morphological analyses and geometric morphometrics of forewing shape. We identified three species within the A. eadyi species group, viz., A. smithi, A. eadyi and A. banksae. Genetic separation of all three species was confirmed, with mean genetic distances between species ranging from 5 to 7.4%. The following morphological characters were determined as the most important for separating species of the A. eadyi group: number and shape of costulae on the anterolateral part of the petiole, shape of the central areola on the propodeum, and shape and venation of the forewings. The differences in wing shape of all three species were statistically significant, but with some overlapping. We identified A. banksae as a widely distributed pea aphid parasitoid, whose known range covers most of the western Palaearctic (from the UK to Israel). Aphidius banksae is diagnosed and redescribed.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akar, S. & Çetin Erdoğan, Ö (2017) Contributions to Aphidiinae (Hymenoptera: Braconidae) fauna of Turkey with new records. Trakya University Journal of Natural Sciences 18, e1e8.Google Scholar
Angalet, W. & Fuester, R. (1977) The Aphidius parasites of the pea aphid Acyrthosiphon pisum in the eastern half of the United States. Annals of the Entomological Society of America 70, 8796.CrossRefGoogle Scholar
Alhmedi, A., Haubruge, E. & Francis, F. (2009) Effect of stinging nettle habitats on aphidophagous predators and parasitoids in wheat and green pea fields with special attention to the invader Harmonia axyridis Pallas (Coleoptera: Coccinellidae). Entomological Science 12, 349358.CrossRefGoogle Scholar
Atanassova, P.V. (1997) Checklist of the subfamily Aphidiinae (Hymenoptera: Braconidae) from Bulgaria. Zoologische Mededelingen 71, 287290.Google Scholar
Atanassova, P., Brookes, C.P., Loxdale, H.D. & Powell, W. (1998) Electrophoretic study of five aphid parasitoid species of the genus Aphidius (hymenoptera: Braconidae), including evidence for reproductively isolated sympatric populations and a cryptic species. Bulletin of Entomological Research 88, 313.CrossRefGoogle Scholar
Autrique, A., Starý, P. & Ntahimpera, L. (1989) Biological control of pest aphids by hymenopterous parasites in Burundi. FAO Plant Protection Bulletin 37, 7174.Google Scholar
Bennett, F.D. (1993) Do introduced parasitoids displace native ones? The Florida Entomologist 76, 5463.CrossRefGoogle Scholar
Berberet, R.C., Arnold, D.C. & Soteres, K.M. (1983) Geographical occurrence of Acyrthosiphon kondoi Shinji in Oklahoma and its seasonal incidence in relation to Acyrthosiphon pisum (Harris), and Therioaphis maculata (Buckton) (Homoptera: Aphididae). Journal of Economic Entomology 76, 10641068.CrossRefGoogle Scholar
Blackman, R.L. & Eastop, V.F. (2000) Aphids on the World's Crops. An Identification and Information Guide. 2nd edn. pp. 414. Chichester, John Wiley & Sons.Google Scholar
Cameron, P.J. & Walker, G.P. (1989) Release and establishment of Aphidius spp. (Hymenoptera: Aphidiidae), parasitoids of pea aphid and blue green aphid in New Zealand. New Zealand Journal of Agricultural Research 32, 281290.CrossRefGoogle Scholar
Cameron, P.J., Walker, G.P. & Allan, D.J. (1981) Establishment and dispersal of the introduced parasite Aphidius eadyi (Hymenoptera: Aphidiidae) in the North Island of New Zealand and its initial effects on pea aphid. New Zealand Journal of Zoology 8, 105112.CrossRefGoogle Scholar
Campbell, A. & Mackauer, M. (1973) Some climatic effects on the spread and abundance of two parasites of the pea aphid in British Columbia (Hymenoptera: Aphidiidae – Homoptera: Aphididae). Zeitschrift fuer Angewandte Entomologie 74, 4755.CrossRefGoogle Scholar
Chen, J.H., González, H.D. & Luhman, J. (1990) A new species of Aphidius (hymenoptera) attacking the pea aphid, Acyrthosiphon pisum. Entomophaga 35, 509514.CrossRefGoogle Scholar
Clement, M., Posada, D.C. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 16571659.CrossRefGoogle ScholarPubMed
Coeur d’acier, A, Pérez Hidalgo, N, Petrović-Obradović, O. (2010) Aphids (Hemiptera, Aphididae). Chapter 9.2, vol. 4, pp. 435474 in Roques, A., Kenis, M., Lees, D., Lopez-Vaamonde, C., Rabitsch, W., Rasplus, J.Y. & Roy, D.B. (Eds) Alien Terrestrial Arthropods of Europe. BioRisk. Sofia, Bulgaria, Pensoft Publishers.Google Scholar
Dayrat, B. (2005) Toward integrative taxonomy. Biological Journal of the Linnean Society 85, 407415.CrossRefGoogle Scholar
Derocles, S.A.P., Plantegenest, M., Rasplus, J.Y., Marie, A., Evans, D.M., Lunt, D.H. & Le Ralec, A. (2016) Are generalist Aphidiinae (Hym. Braconidae) mostly cryptic species complexes? Systematic Entomology 41, 379391.CrossRefGoogle Scholar
Dorchin, N., Joy, J.B., Hilke, L.K., Wise, M.J. & Abrahamson, W.G. (2015) Taxonomy and phylogeny of the Asphondylia species (Diptera: Cecidomyiidae) of North American goldenrods: challenging morphology, complex host associations, and cryptic speciation. Zoological Journal of the Linnean Society 174, 265304.CrossRefGoogle Scholar
Dryden, I.L. & Mardia, K.V. (1998) Statistical Shape Analysis. New York, Wiley.Google Scholar
Elias, M., Fontaine, C. & van Veen, F.J.F. (2013) Evolutionary history and ecological processes shape a local multilevel antagonistic network. Current Biology 23, 13551359.CrossRefGoogle ScholarPubMed
Ferrari, J., Darby, A.C., Daniell, T.J., Godfray, H.C.J. & Douglas, A.E. (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecological Entomology 29, 6065.CrossRefGoogle Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
González, D., White, W., Hall, J. & Dickson, R.C. (1978) Geographical distribution of Aphidiidae (Hym.) imported to California for biological control of Acyrthosiphon kondoi and Acyrthosiphon pisum (Hom.: Aphididae). Entomophaga 23, 239248.CrossRefGoogle Scholar
González, D., Hagen, K.S., Starý, P., Bishop, W., Davis, D.W. & Pike, K.S. (1995) Pea aphid and blue alfalfa aphid. pp. 129135 in Nechols, J.R., Andres, L.A., Beardsley, J.W., Goeden, R.D. & Jackson, C.G. (Eds) Biological Control in the Western United States. Accomplishments and Benefits of Regional Research Project W-84, 1964–1989. Publication 3361. Oakland, California, University of California, Division of Agriculture and Natural Resources.Google Scholar
Hagen, K.S. & Shlinger, E.I. (1960) Imported Indian parasite of pea aphid established in California. California Agriculture 14, 56.Google Scholar
Hasegawa, M., Kishino, H. & Yano, T. (1985) Dating of human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160174.CrossRefGoogle ScholarPubMed
Jamhour, A. (2017) Molecular Characterization and Phylogenetic Relationships Among European Aphidius Nees (Hymenoptera, Braconidae, Aphidiinae). Belgrade, Serbia, Faculty of Biology, University of Belgrade, pp. 2326.Google Scholar
Jamhour, A., Mitrović, M., Petrović, A., Starý, P. & Tomanović, Ž (2016) Re-visiting the Aphidius urticae s. str. group: re-description of Aphidius rubi Starý and A. silvaticus starý (Hymenoptera: Braconidae: Aphidiinae). Zootaxa 4178, 278288.CrossRefGoogle Scholar
Kavallieratos, N.G. & Lykouressis, D. (1999) Redescription of Aphidius transcaspicus Telenga and its distinction from Aphidius colemani Viereck (Hymenoptera Braconidae). Bollettino-Laboratorio di Entomologia Agraria Filippo Silvestri Portici 55, 105105.Google Scholar
Kavallieratos, N.G., Tomanović, Ž, Starý, P., Athanassiou, C.G., Sarlis, G.P., Petrović, O., Niketić, M. & Anagnou Veroniki, M. (2004) A survey of aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) of Southeastern Europe and their aphid–plant associations. Applied Entomology and Zoology 39, 527563.CrossRefGoogle Scholar
Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111120.CrossRefGoogle ScholarPubMed
Kittel, R.N. (2016) Eighty-nine replacement names for Braconidae and Ichneumonidae (Insecta: Hymenoptera: Ichneumonoidea). Japanese Journal of Systematic Entomology 22, 161174.Google Scholar
Klingenberg, C.P. (2011) MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11, 353357.CrossRefGoogle ScholarPubMed
Klingenberg, C.P. & Gidaszewski, N.A. (2010) Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology 59, 245261.CrossRefGoogle ScholarPubMed
Kos, K., Petrović, A., Starý, P., Kavallieratos, N.G., Ivanović, A., Toševski, I. & Tomanović, Ž (2011) On the identity of cereal aphid parasitoid wasps Aphidius uzbekistanicus, Aphidius rhopalosiphi, and Aphidius avenaphis (Hymenoptera: Braconidae: Aphidiinae) by examination of COI mitochondrial gene, geometric morphometrics, and morphology. Annals of the Entomological Society of America 104, 12211232.CrossRefGoogle Scholar
Lachenbruch, P. (1967) An almost unbiased method of obtaining confidence intervals for the probability of misclassification in discriminant analysis. Biometrics 23, 639645.CrossRefGoogle ScholarPubMed
Lozier, J.D., Roderick, G.K. & Mills, N.J. (2009) Molecular markers reveal strong geographic, but not host associated, genetic differentiation in Aphidius transcaspicus, a parasitoid of the aphid genus Hyalopterus. Bulletin of Entomological Research 99, 8396.CrossRefGoogle Scholar
Mackauer, M. & Finlayson, T. (1967) The hymenopterous parasites (Hymenoptera: Aphidiidae et Aphelinidae) of the pea aphid in Eastern North America. The Canadian Entomologist 99, 10511082.CrossRefGoogle Scholar
Maddison, W.P. (1991) Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40, 304314.CrossRefGoogle Scholar
Marsh, P.M. (1977) Notes on the taxonomy and nomenclature of Aphidius species (Hym.: Aphidiidae) parasitic on the pea aphid in North America. Entomophaga 22, 365372.CrossRefGoogle Scholar
McBrien, H. & Mackauer, M. (1990) Hetero-specific larval competition and host discrimination in two species of aphid parasitoids: Aphidius ervi and Aphidius smithi. Entomologia Experimentalis et Applicata 56, 145153.CrossRefGoogle Scholar
Mehle, N. & Trdan, S. (2012) Traditional and modern methods for the identification of thrips (Thysanoptera) species. Journal of Pest Science 85, 179190.CrossRefGoogle Scholar
Mitrović, M. & Tomanović, Ž. (2018) New internal primers targeting short fragments of the mitochondrial COI region for archival specimens from the subfamily Aphidiinae (Hymenoptera, Braconidae). Journal of Hymenoptera Research 64, 191210.CrossRefGoogle Scholar
Mitrovski-Bogdanović, A., Petrović, A., Mitrović, M., Ivanović, A., Žikić, V., Starý, P., Vorburger, C. & Tomanović, Ž (2013) Identification of two cryptic species within the Praon abjectum group (Hymenoptera: Braconidae: Aphidiinae) using molecular markers and geometric morphometrics. Annals of the Entomological Society of America 106, 170180.CrossRefGoogle Scholar
Moraes, G.J. (1987) Importance of taxonomy in biological control. Insect Science and Its Application 8, 841844.Google Scholar
Nei, M. & Kumar, S. (2000) Molecular Evolution and Phylogenetics. New York, Oxford University Press, 333 pp.Google Scholar
Oliver, K.M., Russell, J.A., Moran, N.A. & Hunter, M.S. (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proceedings of the National Academy of Sciences of the USA 100, 18031807.CrossRefGoogle ScholarPubMed
Peccoud, J., Ollivier, A., Plantegenest, M. & Simon, J.-C. (2009a) A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proceedings of the National Academy of Sciences of the USA 16, 74957500.CrossRefGoogle Scholar
Peccoud, J., Simon, J.C., McLaughlin, H.J. & Moran, N.A. (2009b) Post-Pleistocene radiation of the pea aphid complex revealed by rapidly evolving endosymbionts. Proceedings of the National Academy of Sciences of the USA 106, 1631516320.CrossRefGoogle Scholar
Pennacchio, F. (1989) The Italian species of the genus Aphidius nees (Hymenoptera, Braconidae, Aphidiinae). Bollettino del Laboratorio di Entomologia Agraria Filippo Silvestri 46, 75106.Google Scholar
Petrović, A., Mitrović, M., Starý, P., Petrović-Obradović, O., Tomanović, Ž, Žikić, V. & Vorburger, C. (2013) Lysiphlebus orientalis, a new invasive parasitoid in Europe – evidence from molecular markers. Bulletin of Entomological Research 103, 451457.CrossRefGoogle ScholarPubMed
Petrović, A., Čkrkić, J., Jamhour, A., Petrović-Obradović, O., Mitrović, M., Starý, P., Nedstam, B. & Tomanović, Ž (2017) First record of Aphidius ericaphidis (Hymenoptera, Braconidae) in Europe: North American hitchhiker or overlooked Holarctic citizen? Journal of Hymenoptera Research 57, 143153.CrossRefGoogle Scholar
Posada, D. & Crandall, K.A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics (Oxford, England) 14, 817818.CrossRefGoogle ScholarPubMed
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21, 18641877.CrossRefGoogle ScholarPubMed
Rasplus, J.Y., Villemant, C., Paiva, M.R., Delvare, G. & Roques, A. (2010) Hymenoptera. BioRisk 4, 669776.CrossRefGoogle Scholar
Rohlf, F.J. & Slice, D.E. (1990) Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39, 4059.CrossRefGoogle Scholar
Rosen, D. (1986) The role of taxonomy in effective biological control programs. Agriculture, Ecosystems and Environment 15, 121129.CrossRefGoogle Scholar
Roy, H.E., Roy, D.B. & Roques, A. (2011) Inventory of terrestrial alien arthropod predators and parasites established in Europe. BioControl 56, 477504.CrossRefGoogle Scholar
Schellhorn, N.A., Kuhman, T.R., Olson, A.C. & Ives, A.R. (2002) Competition between native and introduced parasitoids of aphids: non-target effects and biological control. Ecology 83, 27452757.CrossRefGoogle Scholar
Schlick-Steiner, B.C., Steiner, F.M., Seifert, B., Stauffer, C., Christian, E. & Crozier, R.H. (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology 55, 421438.CrossRefGoogle ScholarPubMed
Sharkey, M.J. & Wharton, R.A. (1997) Morphology and terminology. pp. 1937 in Wharton, R.A., Marsh, P.M. & Sharkey, M.J. (Eds) Manual of the New World Genera of the Family Braconidae (Hymenoptera). Washington, DC, Special Publication 1, International Society of Hymenopterists.Google Scholar
Starý, P. (1974) Taxonomy, origin, distribution and host range of Aphidius species (Hymenoptera, Aphidiidae) in relation to biological control of the pea aphid in Europe and North America. Zeitschrift fur Angewandte Entomologie 77, 141171.CrossRefGoogle Scholar
Starý, P., González, D. & Hall, J.C. (1980) Aphidius eadyi n.sp. (Hymenoptera: Aphidiidae), a widely distributed parasitoid of the pea aphid, Acyrthosiphon pisum (Harris) in the Palearctic. Entomologica Scandinavica 11, 473480.CrossRefGoogle Scholar
Summers, C.G. (1998) Integrated pest management in forage alfalfa. Integrated Pest Management Reviews 3, 127154.CrossRefGoogle Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 27252729.CrossRefGoogle ScholarPubMed
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle ScholarPubMed
Tomanović, Ž, Petrović, A., Mitrović, M., Kavallieratos, N.G., Starý, P., Rakhshani, E., Rakhshanipour, M., Popović, A., Shukshuk, A.H. & Ivanović, A. (2014) Molecular and morphological variability within the Aphidius colemani group with redescription of Aphidius platensis Brethes (Hymenoptera: Braconidae: Aphidiinae). Bulletin of Entomological Research 104, 552565.CrossRefGoogle Scholar
Tremblay, E. & Pennacchio, F. (1988) Speciation in aphidiine Hymenoptera. pp. 139146 in Gupta, V.K. (Ed.) Advances in Parasitic Hymenoptera Research. Leiden, E.J. Brill.Google Scholar
Unruh, T.R., White, W., González, D. & Woolley, J.B. (1989) Genetic relationships among seventeen Aphidius (hymenoptera: Aphidiidae) populations, including six species. Annals of the Entomological Society of America 82, 754768.CrossRefGoogle Scholar
Van Achterberg, K. (2013) Fauna Europaea: Hymenoptera, Braconidae. Fauna Europaea version 2.6.2. Available online at https://fauna-eu.org/ (accessed 6 September 2017).Google Scholar
van Emden, H. & Harrington, R. (2007) Aphids As Crop Pests. Oxford, UK, CAB International.CrossRefGoogle Scholar
Vorburger, C. (2018) Symbiont-conferred resistance to parasitoids in aphids – challenges for biological control. Biological Control 116, 1726.CrossRefGoogle Scholar
Wylie, H., Matheson, F., Uddin, M. & Holliday, N. (2005) Release and establishment studies in Manitoba, Canada, of Aphidius smithi (Hymenoptera: Aphidiidae), a parasitoid of Acyrthosiphon pisum (Hemiptera: Aphididae). The Canadian Entomologist 137, 9197.CrossRefGoogle Scholar
Ye, Z., Vollhardt, I.M.G., Tomanović, Ž. & Traugott, M. (2017) Evaluation of three molecular markers for identification of European primary parasitoids of cereal aphids and their hyperparasitoids. PLoS ONE 12(5): e0177376.CrossRefGoogle ScholarPubMed
Yu, D.S., van Achterberg, C. & Horstmann, K. (2012) World Ichneumonoidea 2011. Taxonomy, Biology, Morphology and Distribution. Taxapad (Scientific Names for Information Management), Interactive Catalogue, Ottawa. Available online at http://www.taxapad.com.Google Scholar
Zelditch, M.L., Swiderski, D.L. & Sheets, D. (2012) Geometric Morphometrics for Biologists: A Primer, 2nd ed. San Diego, Elsevier.Google Scholar
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics (Oxford, England) 29, 28692876.CrossRefGoogle ScholarPubMed
Žikić, V., Ilić-Milošević, M., Stanković, S., Petrović, A., Petrović-Obradović, O., Kavallieratos, N.G., Starý, P. & Tomanović, Ž (2012) Aphidiinae (Hymenoptera: Braconidae) of Serbia and Montenegro – tritrophic interactions. Acta Entomologica Serbica 17, 83105.Google Scholar
Žikić, V., Stanković, S.S., Ilić-Milošević, M., Petrović-Obradović, O., Petrović, A., Starý, P. & Tomanović, Ž (2015) First detection of Lysiphlebus testaceipes (Cresson) (Hymenoptera: Aphidiinae) in Serbia; an introduced species invading Europe? North-Western Journal of Zoology 11, 97101.Google Scholar
Supplementary material: File

Petrović et al. supplementary material

Table S1

Download Petrović et al. supplementary material(File)
File 40 KB
8
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Resolving the taxonomic status of biocontrol agents belonging to the Aphidius eadyi species group (Hymenoptera: Braconidae: Aphidiinae): an integrative approach
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Resolving the taxonomic status of biocontrol agents belonging to the Aphidius eadyi species group (Hymenoptera: Braconidae: Aphidiinae): an integrative approach
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Resolving the taxonomic status of biocontrol agents belonging to the Aphidius eadyi species group (Hymenoptera: Braconidae: Aphidiinae): an integrative approach
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *