Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-29T14:54:11.136Z Has data issue: false hasContentIssue false

Structure of worldwide populations of Lasioderma serricorne (Coleoptera: Anobiidae) as revealed by amplified fragment length polymorphism profiles

Published online by Cambridge University Press:  09 March 2007

M.P. Blanc*
Affiliation:
Philip Morris International Research and Development, c/o Philip Morris Products SA, Quai Jeanrenaud 56, 2000 Neuchâtel, Switzerland
N. Lugon-Moulin
Affiliation:
Philip Morris International Research and Development, c/o Philip Morris Products SA, Quai Jeanrenaud 56, 2000 Neuchâtel, Switzerland
C. Panighini
Affiliation:
Philip Morris International Research and Development, c/o Philip Morris Products SA, Quai Jeanrenaud 56, 2000 Neuchâtel, Switzerland
H. Pijnenburg
Affiliation:
Philip Morris International Research and Development, c/o Philip Morris Products SA, Quai Jeanrenaud 56, 2000 Neuchâtel, Switzerland
L. Rossi
Affiliation:
Philip Morris International Research and Development, c/o Philip Morris Products SA, Quai Jeanrenaud 56, 2000 Neuchâtel, Switzerland
*
*Fax: +41 32 888 68 08 E-mail: Michel.Blanc@pmintl.com

Abstract

The cigarette beetle Lasioderma serricorne through transportation affects the infestation of stored tobacco. Using amplified fragment length polymorphism (AFLP), DNA polymorphisms were assessed in 16 populations of L. serricorne collected from 15 countries. The dendrograms constructed from profile distance matrices revealed well-supported colony clusters. There was no clear clustering as a function of the geographic origin of the samples. The results suggest extensive insect dispersal among geographical regions due to movement of infested commodities worldwide. This first AFLP population study of a stored-product insect demonstrates the potential of AFLP for distinguishing L. serricorne populations.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashworth, J.R. (1993) The biology of Lasioderma serricorne. Journal of Stored Product Research 29, 291303.CrossRefGoogle Scholar
Behura, S.K., Nair, S., Sahu, S.C. & Mohan, M. (2000) An AFLP marker that differentiates biotypes of the Asian rice gall midge (Orseolia oryzae, Wood-Mason) is sex-linked and also linked to avirulence. Molecular and General Genetics 263, 328334.CrossRefGoogle ScholarPubMed
Benezet, H.J. & Helms, C.W. (1994) Methoprene resistance in the cigarette beetle, Lasioderma serricorne (F.) (Coleoptera: Anobiidae) from tobacco storages in the Southeastern United States. Resistant Pest Management Newsletter 6, 1719.Google Scholar
Carvalho, M.O., Pereira, A.P. & Mexia, A. (2000) Occurrence of Lasioderma serricorne F. and Ephestia elutella (Hb.) in tobacco Virginia fields and curing barns. Integrated Protection of Stored Products, IOBC Bulletin 23, 91101.Google Scholar
Cervera, M.T., Cabezas, J.A., Simón, B., Martinez-Zapater, J.M., Beitia, F. & Cenis, J.L. (2000) Genetic relationships among biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae) based on AFLP analysis. Bulletin of Entomological Research 90, 392396.CrossRefGoogle ScholarPubMed
Dowdy, A.K. & McGaughey, W.H. (1996) Using random amplified polymorphic DNA to differentiate strains of the Indianmeal moth (Lepidoptera: Pyralidae). Environmental Entomology 25, 396400.CrossRefGoogle Scholar
Dresler-Nurmi, A., Terefework, Z., Kaijalainen, S., Lindström, K. & Hatakka, A. (2000) Silver stained polyacrylamide gels and fluorescence-based automated capillary electrophoresis for detection of amplified fragment length polymorphism patterns obtained from white-rot fungi in the genus Trametes. Journal of Microbiological Methods 41, 161172.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, Washington.Google Scholar
Forneck, A., Walker, M.A. & Blaich, R. (2000) Genetic structure of an introduced pest, grape phylloxera (Daktulosphaira vitifoliae Fitch), in Europe. Genome 43, 669678.CrossRefGoogle ScholarPubMed
Hawthorne, D.J. (2001) AFLP-based genetic linkage map of the Colorado potato beetle Leptinotarsa decemlineata: sex chromosomes and a pyrethroid-resistance candidate gene. Genetics 158, 695700.CrossRefGoogle Scholar
Heckel, D.G., Gahan, L.J., Daly, J.C. & Trowell, S. (1999) A genomic approach to understanding Heliothis and Helicoverpa resistance to chemical and biological insecticides. Philosophical Transactions of the Royal Society of London B 353, 17131722.CrossRefGoogle Scholar
Howe, R.W. (1957) A laboratory study of the cigarette beetle, Lasioderma serricorne (F.) (Col., Anobiidae) with a critical review of the literature on its biology. Bulletin of Entomological Research 48, 956.CrossRefGoogle Scholar
Katiyar, S.K., Chandel, G., Tan, Y., Zhang, Y., Huang, B., Nugaliyadde, L., Fernando, K., Bentur, J.S., Inthavong, S., Constantino, S. & Bennett, J. (2000) Biodiversity of Asian rice gall midge (Orseolia oryzae Wood Mason) from five countries examined by AFLP analysis. Genome 43, 322332.CrossRefGoogle ScholarPubMed
Loxdale, H.D. (2001) Tracking flying insects using molecular markers. Antenna 25, 242250.Google Scholar
Loxdale, H.D. & Lushai, G. (1998) Molecular markers in entomology. Bulletin of Entomological Research 88, 577600.CrossRefGoogle Scholar
Miller, M.P., Blinn, D.W. & Keim, P. (2002) Correlations between observed dispersal capabilities and patterns of genetic differentiation in populations of four aquatic insect species from the Arizona White Mountains, USA. Freshwater Biology 47, 16601673.CrossRefGoogle Scholar
Nei, M. & Li, W. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the USA 76, 52695273.CrossRefGoogle ScholarPubMed
Parsons, Y.M. & Shaw, K.L. (2001) Species boundaries and genetic diversity among Hawaiian crickets of the genus Laupala identified using amplified fragment length polymorphism. Molecular Ecology 10, 17651772.CrossRefGoogle ScholarPubMed
Reineke, A., Karlovsky, P. & Zebitz, C.P.W (1999) Amplified fragment length polymorphism analysis of different geographic populations of the gypsy moth, Lymantria dispar (Lepidoptera: Lymantriidae). Bulletin of Entomological Research 89, 7988.CrossRefGoogle Scholar
Ryan, L. (Ed.)(1995) Post-harvest tobacco infestation control. 155pp. L. London, Chapman & Hall.Google Scholar
Saitou, N. & Nei, M. (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Savvidou, N., Mills, K.A. & Pennington, A. (2003) Phosphine resistance in Lasioderma serricorne (Coleoptera: Anobiidae). pp. 702712Credland, P.F., Armitage, D.M., Bell, C.H., Cogan, P.M. & Highley, E. (Eds) Advances in Stored Product Protection, Proceedings of the Eighth International Working Conference on Stored Product Protection, 22–26 July 2002, York, UK. Wallingford, OxonCAB International.Google Scholar
Schlipalius, D., Cheng, Q., Reilly, P.E.B., Collins, P.J. & Ebert, P.R. (2002) Genetic linkage analysis of the lesser grain borer Rhyzopertha dominica identifies two loci that confer high-level resistance to the fumigant phosphine. Genetics 161, 773782.CrossRefGoogle Scholar
Smith, S.G. & Brower, J.H. (1974) Chromosome number of stored product Coleoptera. Journal of the Kansas Entomological Society 47, 317328.Google Scholar
Sneath, P.H.A. & Sokal, R.R. (1973) Numerical taxonomy. San Francisco, California, W.H. Freeman & Co.Google Scholar
Tan, Y.D., Wan, C., Zhu, Y., Lu, C., Xiang, Z. & Deng, H.W. (2001) An amplified fragment length polymorphism map of the silkworm. Genetics 157, 12771284.CrossRefGoogle ScholarPubMed
Ticknor, L.O., Kolstø, A.B., Hill, K.A., Keim, P., Laker, M.T., Tonks, M. & Jackson, P.J. (2001) Fluorescent amplified fragment length polymorphism analysis of Norwegian Bacillus cereus and Bacillus thuringiensis soil isolates. Applied and Environmental Microbiology 67, 48634873.CrossRefGoogle ScholarPubMed
Vos, P. & Kuiper, M. (1998) AFLP analysis. pp.115–131 in Caetano-Anollés, G. & Gresshoff, P.M. (Eds) DNA markers–protocols, applications, and overview New York, Wiley-VCH.Google Scholar
Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M., Zabeau, M. (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 21, 44074414.CrossRefGoogle Scholar
Zhong, D., Pai, A. & Yan, G. (2004) AFLP-based genetic linkage map for the red flour beetle (Tribolium castaneum). Journal of Heredity 95, 5361.CrossRefGoogle ScholarPubMed