Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T07:24:53.071Z Has data issue: false hasContentIssue false

Sublethal effects of growth-regulating insecticides of synthetic and botanical origins on the biological parameters of Spodoptera frugiperda (Lepidoptera: Noctuidae)

Published online by Cambridge University Press:  21 December 2022

Liliane N. Martins
Affiliation:
Department of Plant Protection, Universidade Federal de Pelotas (UFPel), 96160-000, Capão do Leão, Rio Grande do Sul, Brazil
Fernanda C. S. Geisler
Affiliation:
Department of Plant Protection, Universidade Federal de Pelotas (UFPel), 96160-000, Capão do Leão, Rio Grande do Sul, Brazil
Matheus Rakes*
Affiliation:
Department of Plant Protection, Universidade Federal de Pelotas (UFPel), 96160-000, Capão do Leão, Rio Grande do Sul, Brazil
Mikael B. Araújo
Affiliation:
Department of Plant Protection, Universidade Federal de Pelotas (UFPel), 96160-000, Capão do Leão, Rio Grande do Sul, Brazil
Dylan T. T. Amandio
Affiliation:
Postgraduate Program in Plant Genetic Resources, Universidade Federal de Santa Catarina (UFSC), 88040-900, Florianópolis, Santa Catarina, Brazil
Ana Paula S. A. da Rosa
Affiliation:
Embrapa Clima Temperado, 96010-971, Pelotas, Rio Grande do Sul, Brazil
Leandro P. Ribeiro
Affiliation:
Centro de Pesquisa para Agricultura Familiar, Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (CEPAF/EPAGRI), 89801-970, Chapecó, Santa Catarina, Brazil
Daniel Bernardi
Affiliation:
Department of Plant Protection, Universidade Federal de Pelotas (UFPel), 96160-000, Capão do Leão, Rio Grande do Sul, Brazil
*
Author for correspondence: Matheus Rakes, Email: matheusrakes@hotmail.com

Abstract

The objective of this study was to evaluate the effects of growth-regulating insecticides of synthetic (e.g., Certero 480 SC, Intrepid 240 SC, Match EC and Mimic 240 SC) and botanical origins (e.g., Azamax 1.2 EC, Agroneem 850 EC, Azact 2.4 EC and Fitoneem 850 EC) on the biological parameters and fertility life table of Spodoptera frugiperda (J.E. Smith) under laboratory conditions. Larvae were fed insecticides that were incorporated into artificial diets. To develop the fertility life table, the following biological parameters were evaluated: survival at 7 days after infestation (d.a.i) and survivorship at adult eclosion, duration of the neonate-to-adult eclosion period, larval and pupal weights and total fecundity (number of total eggs per female). The results indicated that S. frugiperda neonates surviving LC25 or LC50 concentrations of the evaluated insecticides showed longer larval and egg-to-adult periods, lower larval and pupal weights and reduced fecundity, when compared to the control treatment. Larvae exposed to Azamax at LC25 or LC50 concentrations showed the greatest increase in generation duration (75 d). In addition, S. frugiperda adults emerged from pupae when larvae reared on an artificial diet containing growth regulating insecticides of synthetic and botanical origins produced fewer females per female per generation (Ro). As well as, lower rates of natural population increase per day (rm) compared to insects fed the control diet. Our findings indicated that, neem-derived products and growth-regulating insecticides of synthetic origin may be employed within integrated management strategies that aim to keep populations of S. frugiperda below levels that cause economic damage. Similarly, they offer alternatives for insecticide resistance management programs.

Type
Research Paper
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adhikari, K, Bhandari, S, Niraula, D and Shrestha, J (2020) Use of neem (Azadirachta indica A. Juss) as a biopesticide in agriculture: a review. Journal of Agriculture and Applied Biology 2, 100117.CrossRefGoogle Scholar
Amoabeng, BW, Gurr, GM, Gitau, CW and Stevenson, PC (2014) Cost:benefit analysis of botanical insecticide use in cabbage: implications for smallholder farmers in developing countries. Crop Protection 57, 7176.CrossRefGoogle Scholar
Arrese, EL and Soulages, JL (2010) Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 5, 207225.CrossRefGoogle Scholar
Bateman, ML, Day, RK, Luke, B, Edgington, S, Kuhlmann, U and Cock, MJW (2018) Assessment of potential biopesticide options for managing fall armyworm (Spodoptera frugiperda) in Africa. Journal of Applied Entomology 142, 805819.CrossRefGoogle Scholar
Bernardi, O, Malvestiti, GS, Dourado, PM, Oliveira, WS, Martinelli, S, Berger, GU, Head, GP and Omoto, C (2012) Assessment of the high-dose concept and level of control provided by MON 87701 × MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Managements Science 68, 10831091.CrossRefGoogle ScholarPubMed
Bernardi, O, Bernardi, D, Horikoshi, R,J, Okuma, DM, Miraldo, LL, Fatoretto, J, Medeiros, FCL, Burdc, T and Omoto, C (2016) Selection and characterization of resistance to the Vip3Aa20 protein from Bacillus thuringiensis in Spodoptera frugiperda. Pest Managements Science 72, 17941802.CrossRefGoogle Scholar
Bernardi, D, Bernardi, O, Horikoshi, RJ, Salmeron, E, Okuma, DM, Farias, JR, Nascimento, ARB and Omoto, C (2017) Selection and characterization of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to MON 89034× TC1507× NK603 maize technology. Crop Protection 94, 6468.CrossRefGoogle Scholar
Bolzan, A, Padovez, FEO, Nascimento, ARB, Kaiser, IS, Lira, EC, Amaral, FSA, Kanno, HK, Malaquias, JB and Omoto, C (2019) Seleção e caracterização da herança da resistência de Spodoptera frugiperda (Lepidoptera: Noctuidae) ao clorantraniliprole e resistência cruzada a outros inseticidas diamidas: resistência de Spodoptera frugiperda aos inseticidas diamidas. Pest Managements Science 10, 5376.Google Scholar
Burtet, LM, Bernardi, O, Melo, AA, Maiquel, PP, Strahl, TT and Guedes, JVC (2017) Managing fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), with Bt maize and insecticides in southern Brazil. Pest Managements Science 73, 25692577.CrossRefGoogle ScholarPubMed
Cabodevilla, O, Ibañez, I, Simón, O, Murillo, R, Caballero, P and Williams, T (2011) Occlusion body pathogenicity, virulence and productivity traits vary with transmission strategy in a nucleo polyhedrovirus. Biological Control 5, 184192.CrossRefGoogle Scholar
Campos, EVR, Oliveira, JL, Pascoli, M, Lima, R and Fraceto, LF (2016) Neem oil and crop protection: from now to the future. Frontiers in Plant Science 7, 18.CrossRefGoogle ScholarPubMed
Carlson, GR, Dhadialla, TS, Hunter, R, Jansson, RK, Jany, CS, Lidert, Z and Slawecki, RA (2001) The chemical and biological properties of methoxyfenozide, a new insecticidal ecdysteroid agonist. Pest Managements Science 57, 115119.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Carvalho, RA, Omoto, C, Field, LM, Williamson, MS and Bass, C (2013) Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PlosOne 8, e62268.CrossRefGoogle ScholarPubMed
Chein, WB, Li, YY, Wang, MQ, Liu, CX, Mao, JJ, Chen, HY and Zhang, LS (2019) Entomopathogen resources of fall armyworm Spodoptera frugiperda, and their application status. Plant Protection 45, 19.Google Scholar
Dhadialla, S, Carlson, R and Le, P (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annual Review of Entomology 43, 545569.CrossRefGoogle ScholarPubMed
Diez-Rodrígues, GI and Omoto, C (2001) Inheritance of lambdacyhalothrin resistance in Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Neotropical Entomology 30, 311316.CrossRefGoogle Scholar
Duarte, JP, Redaelli, LR, Jahnke, SM and Trapp, S (2019) Effect of Azadirachta indica (Sapindales: Meliaceae) oil on Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae and adults. Florida Entomology 102, 408412.CrossRefGoogle Scholar
El-Ghar, GESA, Radwan, HSA, El-Bermawy, ZA and Zidan, LTM (2010) Sublethal effects of avermectin b1, β-exotoxin of Bacillus thuringiensis and diflubenzuron against cotton leafworm (Lepidoptera: Noctuidae). Journal of Applied Entomology 119, 309313.CrossRefGoogle Scholar
Geisler, FCS, Martins, LN, Treptow, RCB, Baronio, CA, Stupp, P, Ribeiro, LP, Garcia, FRM and Bernardi, D (2019) Laboratory and field assessments of lethal and sublethal toxicities of acetogenin-based bioinsecticides against Zaprionus indianus (Diptera: Drosophilidae). Chilean Journal of Agricultural Research 79, 17.CrossRefGoogle Scholar
Goergen, G, Kumar, PL, Sankung, SB, Togola, A and Tamò, M (2016) First report of outbreaks of the fall armyworm Spodoptera frugiperda (JE Smith) (Lepidoptera, Noctuidae), a new alien invasive pest in West and Central Africa. Plos One 11, e0165632.CrossRefGoogle Scholar
Hafeez, M, Li, X, Yousaf, HK, Khan, MM, Imran, M, Zhang, Z, Huang, J, Zhang, J, Shah, S, Wang, L, Fernández-Grandon, GM, Ali, S and Lu, Y (2021) Sublethal effects of bistrifluron on key biological traits, macronutrients contents and vitellogenin (SeVg) expression in Spodoptera exigua (Hübner). Pesticide Biochemistry and Physiology 174, 104802.CrossRefGoogle ScholarPubMed
Horikoshi, RJ, Bernardi, D, Bernardi, O, Malaquias, JB, Okuma, DM, Miraldo, LL, Amaral, FSA and Omoto, C (2016) Effective dominance of Spodoptera frugiperda resistance to Bt maize and cotton varieties: implications for resistance management. Scientific Report 6, 348364.Google ScholarPubMed
Insecticide Resistance Action Committee (IRAC) (2011) IRAC Susceptibility Test Methods Series Method No: 020. Available at https://irac-online.org/methods/spodoptera-helicoverpa-heliothis-larvae/ (Accessed 02 January 2022).Google Scholar
Isman, MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology 51, 4566.CrossRefGoogle Scholar
Isman, MB (2017) Bridging the gap: moving botanical insecticides from the laboratory to the farm. Industrial Crops and Products 110, 1014.CrossRefGoogle Scholar
Isman, MB (2020) Botanical insecticides in the twenty-first century – fulfilling their promise? Annual Review of Entomology 65, 233249.CrossRefGoogle ScholarPubMed
Kasten, P Jr, Precetti, AACM and Parra, JRP (1978) Dados biológicos comparativos de Spodoptera frugiperda (J. E. Smith, 1797) em duas dietas artificiais e substrato natural. Revista de Agricultura 53, 6978.Google Scholar
Lima, MPL, Oliveira, JV, Gondim, MGC Jr, Marques, EJ and Correia, AA (2010) Bioatividade de formulações de NIM (Azadirachta indica A. Juss, 1797) e de Bacillus thuringiensis subsp. aizawai em lagartas de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Ciência e Agrotecnologia 34, 13811389.CrossRefGoogle Scholar
Lira, ACS, Wanderley-Teixeira, V, Teixeira, AAC, Cunha, FM, Cruz, GS and Neto, CJCL (2020) Physiological and behavioral interactions of a predator with its prey under indirect exposure to the insect growth regulator lufenuron. Crop Protection 137, 105289.CrossRefGoogle Scholar
Mahmoudvand, M, Abbasipour, H, Garjan, AS and Bandani, AR (2011) Sublethal effects of hexaflumuron on development and reproduction of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Insect Science 18, 689696.CrossRefGoogle Scholar
Maia, HNM, Luiz, AJB and Campanhola, C (2000) Statistical inference on associated fertility life table parameters using jackknife technique: computational aspects. Journal of Economic Entomology 93, 511518.CrossRefGoogle ScholarPubMed
Marques, LH, Santos, AC, Castro, BA, Moscardini, VF, Rossetto, J, Silva, OAN, Zobiole, LHS, Valverde-Garcia, P, Babcock, JM, Storer, NP, Rule, DM and Fernandes, OA (2017) Field evaluation of soybean transgenic event DAS-81419-2 expressing Cry1F and Cry1Ac proteins for the control of secondary Lepidoptera in pests in Brazil. Crop Protection 96, 109115.CrossRefGoogle Scholar
Merkey, AB, Wong, CK, Hoshizaki, DK and Gibbs, AG (2011) Energetics of metamorphosis in Drosophila melanogaster. Journal of Insect Physiology 57, 14371445.CrossRefGoogle ScholarPubMed
Montezano, DG, Specht, A, Sosa-Gómez, DR, Roque-Specht, VF, Paula-Moraes, SV, Peterson, JA and Hunt, TE (2019) Developmental parameters of Spodoptera frugiperda (Lepidoptera: Noctuidae) immature stages under controlled and standardized conditions. Journal of Agricultural Science 11, 7689.CrossRefGoogle Scholar
Mordue (Luntz), AJ (2004) Present concepts of the mode of action of azadirachtin from neem. In Koul, O and Wahab, S (eds), Neem: Today and in the New Millennium. Dordrecht, The Netherlands: Kluwer Academic Publishers, pp. 229242.CrossRefGoogle Scholar
Mordue (Luntz), AJ and Blackwell, A (1993) Azadirachtin: an update. Journal of Insect Physiology 39, 903924.CrossRefGoogle Scholar
Mulder, K and Gijswijt, MJ (1973) The laboratory evaluation of two promising new insecticides which interfere with cuticule deposition. Journal of Pest Science 4, 737745.CrossRefGoogle Scholar
Nascimento, ARBD, Farias, JR, Bernardi, D, Horikoshi, RJ and Omoto, C (2016) Genetic basis of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to the chitin synthesis inhibitor lufenuron. Pest Management Science 72, 810815.CrossRefGoogle Scholar
Nijhout, HF, Riddiford, LM, Mirth, C, Shingleton, AW, Suzuki, Y and Callier, V (2014) The developmental control of size in insects. WIREs Developmental Biology 3, 113134.CrossRefGoogle ScholarPubMed
Okuma, DM, Bernardi, D, Horikoshi, RJ, Bernardi, O, Silva, AP and Omoto, C (2018) Inheritance and fitness costs of Spodoptera frugiperda (Lepidoptera: Noctuidae) resistance to spinosad in Brazil. Pest Management Science 74, 14411448.CrossRefGoogle ScholarPubMed
Paredes-Sánchez, FA, Rivera, G, Bocanegra-García, V, Martínez-Padrón, HY, Berrones-Morales, M, Niño-García, N and Herrera-Mayorga, V (2021) Advances in control strategies against spodoptera frugiperda. A review. Molecules 26, 5587.CrossRefGoogle ScholarPubMed
Pineda, S, Martínez, A, Figueroa, J, Schneider, M, Del Estal, P, Viñuela, E, Gómez, B, Smagghe, G and Budia, F (2009) Influence of azadirachtin and methoxyfenozide on life parameters of Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Economic Entomology 102, 14901496.CrossRefGoogle ScholarPubMed
Qin, D, Zhang, P, Zhou, Y, Liu, B, Xiao, C, Chen, W and Zhang, Z (2019) Antifeeding effects of azadirachtin on the fifth instar Spodoptera litura larvae and the analysis of azadirachtin on target sensilla around mouthparts. Archives of Insect Biochemistry and Physiology 103, e21646.Google ScholarPubMed
Ribeiro, LP, Vendramim, JD, Gonçalves, GLP, Ansante, TF, Gloria, E, Lopes, J, Mello-Silva, R and Fernandes, JB (2016) Searching for promising sources of grain protectors in extracts from Neotropical Annonaceae. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 15, 215232.Google Scholar
Robertson, JL, Russell, RM, Preisler, HK and Savin, NE (2007) Bioassays with Arthropods. Boca Raton, FL: CRC, p. 199.CrossRefGoogle Scholar
Roel, AR, Dourado, DM, Matias, R, Porto, KRA, Bednaski, AV and Costa, RB (2010) The effect of sub-lethal doses of Azadirachta indica (Meliaceae) oil on the midgut of Spodoptera frugiperda (Lepidoptera, Noctuidae). Revista Brasileira de Entomologia 54, 505510.Google Scholar
SAS Institute INC (2011) Statistical Analysis System: Getting Started with the SAS Learning. Cary, NC: SAS Institute.Google Scholar
Singh, G and Suri, KS (2013) Potential of Insect Growth Regulators in Insect Pest Management. Jodhpur: Scientific Publishers, pp. 110119.Google Scholar
Specht, A, Montezano, DG, Sosa-Gómez, DR, Paula-Moraes, SV, Roque-Specht, VF and Barros, NM (2015) Reproductive potential of Spodoptera eridania (Stoll) (Lepidoptera: Noctuidae) in the laboratory: effect of multiple couples and the size. Brazilian Journal of Biology 76, 526–230.CrossRefGoogle Scholar
Sun, XX, Hu, CX, Jia, HR, Wu, QL, Shen, XJ, Zhao, SY, Jiang, YY and Wu, KM (2021) Case study on the first immigration of fall armyworm, Spodoptera frugiperda invading into China. Journal of Integrative Agriculture 20, 664672.CrossRefGoogle Scholar
Tak, JH and Isman, MB (2017) Acaricidal and repellent activity of plant essential oil-derived terpenes and the effect of binary mixtures against Tetranychus urticae Koch (Acari: Tetranychidae). Industrial Crops and Products 108, 786792.CrossRefGoogle Scholar
Toscano, LC, Calado Filho, GC, Cardoso, AM, Marayama, WI and Tomquelski, GV (2012) Impacto de inseticidas sobre Spodoptera frugiperda (Lepidoptera:Noctuidae) e seus inimigos naturais em milho safrinha cultivado em Cassilância e Chapadão do Sul, MS. Arquivo Instituto Biológico 79, 223231.CrossRefGoogle Scholar
Yano, SAC, Specht, A, Moscardi, F, Carvalho, RA, Dourado, PM, Martinelli, S, Head, GP and Sosa-Gómez, DR (2015) High susceptibility and low resistance allele frequency of Chrysodeixis includes (Lepidoptera: Noctuidae) field populations to Cry1Ac in Brazil. Pest Management Science 72, 15781584.CrossRefGoogle Scholar
Zhu, Q, He, Y, Yao, J, Liu, Y, Tao, L and Huang, Q (2012) Effects of sublethal concentrations of the chitin synthesis inhibitor, hexaflumuron, on the development and hemolymph physiology of the cutworm, Spodoptera litura. Journal of Insect Science 12, 113.CrossRefGoogle ScholarPubMed
Supplementary material: File

Martins et al. supplementary material

Table S1

Download Martins et al. supplementary material(File)
File 15.4 KB