Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-20T13:16:25.139Z Has data issue: false hasContentIssue false

Behavioural strategies of fruit flies of the genus Dacus (Diptera: Tephritidae) significant in mating and host-plant relationships

Published online by Cambridge University Press:  10 July 2009

R. A. I. Drew
Affiliation:
Department of Primary Industries, Entomology Branch, Meiers Road, Indooroopilly, Queensland 4068, Australia

Abstract

Adults of Dacus spp. feed on plant surface bacteria. The responses of D. tryoni (Froggatt) and D. cacuminatus (Hering) to some components of bacterial odours and to cue-lure were tested in a field-cage olfactometer, in studies in south-eastern Queensland. One component of bacterial emission, 2-butanone, attracted D. tryoni (a species responding to cue-lure) but not D. cacuminatus (a species responding to methyl eugenol) and is suggested as the attractive portion of the cue-lure molecule. Sexually mature males and immature females of D. tryoni responded to 2-butanone, cue-lure and bacterial odours in field-cage tests. Females fed on sugar and water required protein hydrolysate to produce eggs, but males were fertile with or without protein. These different nutrient requirements, and the fact that males and females possess different crop colour and bacterial contents when feeding in the same host-plant, indicate that the sexes feed on different substrates. Consequently, the strong bacterial attractant cues in the host-tree may be a feeding attractant to females and a sex attractant to males. It is proposed that 2-butanone is an important rendezvous stimulant in nature, bringing the mature male flies into the feeding and oviposition sites (host-trees) of the developing females for mating encounters.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albone, E. S., Gosden, P. E. & Ware, G. C. (1977). Bacteria as a source of chemical signals in mammals.—pp. 3543in Muller-Schwarze, D. & Mozell, M. M. (Eds.). Chemical signals in vertebrates.—New York, Plenum Press.CrossRefGoogle Scholar
Alexander, B. H., Beroza, M., Oda, T. A., Steiner, L. F., Miyashita, D. H. & Mitchell, W. C. (1962). The development of male melon fly attractants.—J. agric. Fd Chem. 10, 270276.CrossRefGoogle Scholar
Beroza, M. & Green, N. (1963). Synthetic chemicals as insect attractants.—Adv. Chem. Ser. 41, 1130.CrossRefGoogle Scholar
Bush, G. L. (1966). The taxonomy, cytology, and evolution of the genus Rhagoletis in North America (Diptera, Tephritidae).—Bull. Mus. comp. Zool. Harv. 134, 431562.Google Scholar
Bush, G. L. (1969). Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis.—Evolution, Lancaster, Pa. 23, 237251.CrossRefGoogle ScholarPubMed
Bush, G. L. (1974). The mechanism of sympatric host race formation in the true fruit flies (Tephritidae).—pp. 323in White, M. J. D. (Ed.). Genetic mechanisms of speciation in insects.—170 pp. Brookvale, N.S.W., Australia & New Zealand Book Co.Google Scholar
Drew, R. A. I. (1969). Morphology of the reproductive system of Strumeta tryoni (Froggatt) (Diptera: Trypetidae) with a method of distinguishing sexually mature adult males.—J. Aust. entomol. Soc. 8, 2132.CrossRefGoogle Scholar
Drew, R. A. I. (1974). The responses of fruit fly species (Diptera: Tephritidae) in the South Pacific area to male attractants.—J. Aust. entomol. Soc. 13, 267270.CrossRefGoogle Scholar
Drew, R. A. I., Courtice, A. C. & Teakle, D. S. (1983). Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae).—Oecologia 60, 279284.CrossRefGoogle Scholar
Drew, R. A. I. & Fay, H. A. (in press). Comparison of the roles of ammonia and bacteria in the attraction of Dacus tryoni (Froggatt) (Queensland fruit fly) to proteinaceous suspensions.—Journal of Plant Protection in the Tropics.Google Scholar
Drew, R. A. I. & Hooper, G. H. S. (1981). The responses of fruit fly species (Diptera: Tephritidae) in Australia to various attractants.—J. Aust. entomol. Soc. 20, 201205.CrossRefGoogle Scholar
Drew, R. A. I. & Lloyd, A. C. (in press). The association of fruit flies (Diptera: Tephritidae) and their bacteria with host plants.—Ann. ent. Soc. Am.Google Scholar
Fitt, G. P. (1981). Responses by female Dacinae to “male” lures and their relationship to patterns of mating behaviour and pheromone response.—Entomologia exp. appl. 29, 8797.CrossRefGoogle Scholar
Fletcher, B. S. (1968). Storage and release of a sex pheromone by the Queensland fruit fly, Dacus tryoni (Diptera: Trypetidae).—Nature, Lond. 219, 631632.CrossRefGoogle ScholarPubMed
Fletcher, B. S., Bateman, M. A., Hart, N. K. & Lamberton, J. A. (1975). Identification of a fruit fly attractant in an Australian plant, Zieria smithii, as 0-methyl eugenol.—J. econ. Ent. 68, 815816.CrossRefGoogle Scholar
Gow, P. L. (1954). Proteinaceous bait for the oriental fruit fly.—J. econ. Ent. 47, 153160.CrossRefGoogle Scholar
Grewal, J. S. & Kapoor, V. C. (1984). Courtship and mating behaviour in the fruit fly Dioxyna sororcula (Wied.) (Diptera: Tephritidae).—Aust. J. Zool. 32, 671676.CrossRefGoogle Scholar
Hayward, N. J., Jeavons, T. H., Nicholson, A. J. C. & Thornton, A. G. (1977). Methyl mercaptan and dimethyl disulfide production from methionine by Proteus species detected by head-space gas-liquid chromatography.—J. clin. Microbiol. 6, 187194.CrossRefGoogle ScholarPubMed
Hill, A. R. & Hooper, G. H. S. (1984). Attractiveness of various colours to Australian tephritid fruit flies in the field.—Entomologia exp. appl. 35, 119128.CrossRefGoogle Scholar
Huettel, M. D. & Bush, G. L. (1972). The genetics of host selection and its bearing on sympatric speciation in Procecidochares (Diptera: Tephritidae).—Entomologia exp. appl. 15, 465480.CrossRefGoogle Scholar
Metcalf, R. L. (1979). Plants, chemicals, and insects: some aspects of coevolution.—Bull. ent. Soc. Am. 25, 3035.Google Scholar
Metcalf, R. L., Metcalf, E. R., Mitchell, W. C. & Lee, L. W. Y. (1979). Evolution of olfactory receptor in oriental fruit fly Dacus dorsalis.—Proc. natn. Acad. Sci. U.S.A. 76, 15611565.CrossRefGoogle ScholarPubMed
Metcalf, R. L., Mitchell, W. C. & Metcalf, E. R. (1983). Olfactory receptors in the melon fly Dacus cucurbitae and the oriental fruit fly Dacus dorsalis.—Proc. natn. Acad. Sci. U.S.A. 80, 31433147.CrossRefGoogle ScholarPubMed
Nakagawa, S., Farias, G. J. & Steiner, L. F. (1970). Response of female Mediterranean fruit flies to male lures in the relative absence of males.—J. econ. Ent. 63, 227229.CrossRefGoogle Scholar
Nursten, H. E. (1970). Volatile compounds: the aroma of fruits.—pp. 239268in Hume, A. C. (Ed.). The biochemistry of fruits and their products. Vol. 1.—620 pp. London & New York, Academic Press.Google Scholar
Parker, G. A. (1978). Evolution of competitive mate searching.—A. Rev. Ent. 23, 173196.CrossRefGoogle Scholar
Parker, G. A. (1979). Sex around the cow-pats.—New Scient. 82, 125127.Google Scholar
Paterson, H. E. H. (1978). More evidence against speciation by reinforcement.—S. Afr. J. Sci. 74, 369371.Google Scholar
Paterson, H. E. H. (1982). Perspective on speciation by reinforcement.—S. Afr. J. Sci. 78, 5357.Google Scholar
Paterson, H. E. H. (1985). The recognition concept of species.—pp. 2129in Vrba, E. S. (Ed.). Species and speciation.—176 pp. Pretoria, Transvaal Museum (Transvaal Museum Monograph no. 4).Google Scholar
Webster, R. P., Stoffolano, J. G. Jr. & Prokopy, R. J. (1979). Long-term intake of protein and sucrose in relation to reproductive behavior of wild and laboratory cultured Rhagoletis pomonella.—Ann. ent. Soc. Am. 72, 4146.CrossRefGoogle Scholar
Zwolfer, H. (1974). Das Treffpunkt-Prinzip als Kommunikationsstrategie und Isolations-mechanismus bei Bohrfliegen (Diptera: Trypetidae).—Entomolog. Ger. 1, 1120.Google Scholar