Skip to main content
×
Home
    • Aa
    • Aa

Control of Humidity with Potassium Hydroxide, Sulphuric Acid, or other Solutions

  • M. E. Solomon (a1)
Abstract

Methods of preparing solutions of graded density for the accurate control of atmospheric relative humidity are described, and some pitfalls in their use and in the use of saturated salt solutions are indicated.

For graded solutions of potassium hydroxide and of sulphuric acid, data from the International Critical Tables or more recent sources are used as the basis of tables giving the concentrations (wt.%) and densities corresponding to relative humidities in steps of 5 per cent. R.H. Sources of similar data for calcium chloride, sodium hydroxide, sodium chloride, and glycerol solutions are given.

As an addition to the compilation of the available data on humidities in contact with various saturated salt solutions by O'Brien (1948), some more recent figures are quoted.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D. S. Carr & B. L. Harris (1949). Solutions for maintaining constant relative humidity.—Industr. Engng Chem., 41, pp. 20142015.

E. M. Collins (1933). The partial pressures of water in equilibrium with aqueous solutions of sulfuric acid.—J. phys. Chem., 37, pp. 11911203.

D. S. Davis (1942). Vapour pressure nomographs for aqueous sodium hydroxide solutions.—Industr. Engng Chem., 34, pp. 11311132.

H. S. Harned & M. A. Cook (1939). The thermodynamics of aqueous sodium chloride solutions from 0 to 40° from electromotive force measurements.—J. Amer. chem. Soc., 61, pp. 495497. (Chem. Abstr., 33, 3663·5.)

C. G. Johnson (1940). The maintenance of high atmospheric humidities for entomological work with glycerol-water mixtures.—Ann. appl. Biol., 27, pp. 295299.

F. E. M. O'Brien (1948). The control of humidity by saturated salt solutions.—J. sci. Instrum., 25, pp. 7376.

Pickering (1894). Phil. Mag., 37, p. 359. (Int. crit. Tabl., 3, pp. 86, 110.)

H. F. Schoof (1941). The effects of various relative humidities on the life processes of the southern cow-pea weevil, Callosobruchus maculatus (Fabr.) at 30°C., ±0·8°.—Ecology, 22, pp. 297305.

R. Shankman & A. R. Gordon (1939). The vapour pressure of aqueous solutions of sulphuric acid.—J. Amer. chem. Soc, 61, pp. 23702373.

M. E. Solomon (1937). Experiments on the effects of temperature and humidity on the survival of Halotydeus destructor (Tucker), Acarina fam. Penthaleidae.—Aust. J. exp. Biol. med. Sci., 15, pp. 116.

M. E. Solomon (1945). The use of cobalt salts as indicators of humidity and moisture.—Ann. appl. Biol., 32, pp. 7585.

R. H. Stokes & R. A. Robinson (1949). Standard solutions for humidity control at 25°C.—Industr. Engng Chem., 41, p. 2013.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Entomological Research
  • ISSN: 0007-4853
  • EISSN: 1475-2670
  • URL: /core/journals/bulletin-of-entomological-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 44 *
Loading metrics...

Abstract views

Total abstract views: 575 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th May 2017. This data will be updated every 24 hours.