Hostname: page-component-7dd5485656-bvgqh Total loading time: 0 Render date: 2025-10-26T15:01:22.292Z Has data issue: false hasContentIssue false

The dual functions of a newly identified C-type lectin (TcCTL17) in the immunity and development of Tribolium castaneum

Published online by Cambridge University Press:  18 March 2025

Peng Chen
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
Huayi Ai
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
Zhiping Liu
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
Chengjun Li*
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
Bin Li*
Affiliation:
Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
*
Corresponding author: Chengjun Li; Email: lcj3314@163.com; Bin Li; Email: libin@njnu.edu.cn
Corresponding author: Chengjun Li; Email: lcj3314@163.com; Bin Li; Email: libin@njnu.edu.cn

Abstract

C-type lectins (CTLs), a diverse family of pattern recognition receptors, are essential for immune recognition and pathogen clearance in invertebrates. TcCTL17 contains one carbohydrate recognition domain and three scavenger receptor Cys-rich domains. Spatial and temporal expression analysis revealed that TcCTL17 is highly expressed in early pupa, early adult stages, and the larval gut at 20 days. The recombinant TcCTL17 exhibited dose-dependent binding to lipopolysaccharides and peptidoglycans, Ca2+-dependent binding and agglutination of bacteria in vitro. Knocking down TcCTL17 before bacterial exposure reduced survival rates and increased bacterial loads in T. castaneum larvae, accompanied by decreased antimicrobial peptide expression and haemolymph phenoloxidase activity. Additionally, TcCTL17 RNA interference caused developmental abnormalities, affecting metamorphosis and fecundity, possibly by influencing the 20E, JH, and vitellogenin pathways. These findings underscore dual functions of TcCTL17 in immunity and development, making it a potential target for pest management.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

#

These authors contributed equally to this work.

References

Akira, S, Uematsu, S and Takeuchi, O (2006) Pathogen recognition and innate immunity. Cell 124(4), 783801. doi:10.1016/j.cell.2006.02.015.CrossRefGoogle ScholarPubMed
Ashida, M and Brey, PT (1995) Role of the integument in insect defense: Pro-phenol oxidase cascade in the cuticular matrix. Proceedings of the National Academy of Sciences of the United States of America 92(23), 1069810702.https://doi.org/10.1073/pnas.92.23.10698.CrossRefGoogle ScholarPubMed
Baruah, GS, Sarma, HK, Bardoloi, S and Bora, D (2019) Purification and characterization of phenoloxidase from the hemolymph of healthy and diseased Antheraea assamensis Helfer (Lepidoptera: Saturniidae): Effects of certain biological components and chemical agents on enzyme activity. Archives of Insect Biochemistry and Physiology: Published in Collaboration with the Entomological Society of America 100(3), e21531. doi:10.1002/arch.21531.CrossRefGoogle ScholarPubMed
Bi, J, Feng, F, Li, J, Mao, J, Ning, M, Song, X, Xie, J, Tang, J and Li, B (2019) A C-type lectin with a single carbohydrate-recognition domain involved in the innate immune response of Tribolium castaneum. Insect Molecular Biology 28(5), 649661. doi:10.1111/imb.12582.CrossRefGoogle ScholarPubMed
Bi, J, Ning, M, Li, J, Zhang, P, Wang, L, Xu, S, Zhong, Y, Wang, Z, Song, Q and Li, B (2020a) A C-type lectin with dual-CRD from Tribolium castaneum is induced in response to bacterial challenge. Pest Management Science 76(12), 39653974. doi:10.1002/ps.5945.CrossRefGoogle Scholar
Bi, J, Ning, M, Xie, X, Fan, W, Huang, Y, Gu, W, Wang, W, Wang, L and Meng, Q (2020b) A typical C-type lectin, perlucin-like protein, is involved in the innate immune defense of whiteleg shrimp Litopenaeus vannamei. Fish Shellfish Immunology 103, 293301. doi:10.1016/j.fsi.2020.05.046.CrossRefGoogle Scholar
Bi, J, Wang, Y, Gao, R, Liu, P, Jiang, Y, Gao, L, Li, B, Song, Q and Ning, M (2023) Functional Analysis of a CTL-X-type lectin CTL16 in development and innate immunity of Tribolium castaneum. International Journal of Molecular Sciences 24(13). doi:10.3390/ijms241310700.CrossRefGoogle ScholarPubMed
Cheng, J, Wang, Y, Li, F, Liu, J, Sun, Y and Wu, J (2014) Cloning and characterization of a mannose binding C-type lectin gene from salivary gland of Aedes albopictus. Parasites & Vectors 7, 337. doi:10.1186/1756-3305-7-337.CrossRefGoogle ScholarPubMed
Cheng, Y, Lin, Z, Wang, JM, Xing, LS, Xiong, GH and Zou, Z (2018) CTL14, a recognition receptor induced in late stage larvae, modulates anti-fungal immunity in cotton bollworm Helicoverpa armigera. Developmental and Comparative Immunology 84, 142152. doi:10.1016/j.dci.2018.02.010.CrossRefGoogle ScholarPubMed
Chin, ML and Mlodzik, M (2013) The Drosophila selectin furrowed mediates intercellular planar cell polarity interactions via frizzled stabilization. Development Cell 26(5), 455468. doi:10.1016/j.devcel.2013.07.006.CrossRefGoogle ScholarPubMed
Ding, N, Wang, Z, Geng, N, Zou, H, Zhang, G, Cao, C, Li, X and Zou, C (2020) Silencing Br-C impairs larval development and chitin synthesis in Lymantria dispar larvae. Journal of Insect Physiology 122, 104041. doi:10.1016/j.jinsphys.2020.104041.CrossRefGoogle ScholarPubMed
Dorrah, MA, Mohamed, AA and Shaurub, EH (2019) Immunosuppressive effects of the limonoid azadirachtin, insights on a nongenotoxic stress botanical, in flesh flies. Pesticide Biochemistry and Physiology 153, 5566. doi:10.1016/j.pestbp.2018.11.004.CrossRefGoogle ScholarPubMed
Drickamer, K (1993) Evolution of Ca(2+)-dependent animal lectins. Progress in Nucleic Acid Research and Molecular Biology 45, 207232.CrossRefGoogle ScholarPubMed
Drickamer, K and Dodd, RB (1999) C-Type lectin-like domains in Caenorhabditis elegans: Predictions from the complete genome sequence. Glycobiology 9(12), 13571369. doi:10.1093/glycob/9.12.1357.CrossRefGoogle ScholarPubMed
Eleftherianos, I, Marokhazi, J, Millichap, PJ, Hodgkinson, AJ, Sriboonlert, A, Ffrench-constant, RH and Reynolds, SE (2006) Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: Roles of immune-related proteins shown by RNA interference. Insect Biochemistry and Molecular Biology 36(6), 517525. doi:10.1016/j.ibmb.2006.04.001.CrossRefGoogle ScholarPubMed
Gao, S, Zhang, K, Wei, L, Wei, G, Xiong, W, Lu, Y, Zhang, Y, Gao, A and Li, B (2020) Insecticidal activity of Artemisia vulgaris essential oil and transcriptome analysis of Tribolium castaneum in response to oil exposure. Front Genetics 11, 589. doi:10.3389/fgene.2020.00589.CrossRefGoogle ScholarPubMed
Ghanem, MME, Abd-Elaziz, AM and Mohamed, MA (2025) Biochemical and toxicological characteristics of polyphenol oxidase from red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 287, 110044. doi:10.1016/j.cbpc.2024.110044.Google ScholarPubMed
Hildebrandt, A, Pflanz, R, Behr, M, Tarp, T, Riedel, D and Schuh, R (2015) Bark beetle controls epithelial morphogenesis by septate junction maturation in Drosophila. Developmental Biology 400(2), 237247. doi:10.1016/j.ydbio.2015.02.008.CrossRefGoogle ScholarPubMed
Hoffmann, JA (2003) The immune response of Drosophila. Nature 426(6962), 3338. doi:10.1038/nature02021.CrossRefGoogle ScholarPubMed
Ip, WK, Takahashi, K, Ezekowitz, RA and Stuart, LM (2009) Mannose-binding lectin and innate immunity. Immunological Reviews 230(1), 921. doi:10.1111/j.1600-065X.2009.00789.x.Google ScholarPubMed
Jaspers, MH, Nolde, K, Behr, M, Joo, SH, Plessmann, U, Nikolov, M, Urlaub, H and Schuh, R (2012) The claudin Megatrachea protein complex. Journal Biological Chemistry 287(44), 3675636765. doi:10.1074/jbc.M112.399410.CrossRefGoogle ScholarPubMed
Jindra, M, Bellés, X and Shinoda, T (2015) Molecular basis of juvenile hormone signaling. Current Opinion in Insect Science 11, 3946. doi:10.1016/j.cois.2015.08.004.CrossRefGoogle ScholarPubMed
Jindra, M, Palli, SR and Riddiford, LM (2013) The juvenile hormone signaling pathway in insect development. Annual Review of Entomology 58, 181204. doi:10.1146/annurev-ento-120811-153700.CrossRefGoogle ScholarPubMed
Kanost, MR, Jiang, H and Yu, XQ (2004) Innate immune responses of a lepidopteran insect, Manduca sexta. Immunol Review 198, 97105. doi:10.1111/j.0105-2896.2004.0121.x.CrossRefGoogle ScholarPubMed
Kilpatrick, DC (2002) Animal lectins: A historical introduction and overview. Biochimica et Biophysica Acta 1572(2-3), 187197. doi:10.1016/s0304-4165(02)00308-2.CrossRefGoogle ScholarPubMed
Konopova, B, Smykal, V and Jindra, M (2011) Common and distinct roles of juvenile hormone signaling genes in metamorphosis of holometabolous and hemimetabolous insects. PLoS One 6(12), e28728. doi:10.1371/journal.pone.0028728.CrossRefGoogle ScholarPubMed
Lemaitre, B and Hoffmann, J (2007) The host defense of Drosophila melanogaster. Annual Review of Immunology 25, 697743. doi:10.1146/annurev.immunol.25.022106.141615.CrossRefGoogle ScholarPubMed
Lemaitre, B, Reichhart, JM and Hoffmann, JA (1997) Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proceedings of the National Academy of Sciences of the United States of America 94(26), 1461414619. doi:10.1073/pnas.94.26.14614.CrossRefGoogle ScholarPubMed
Leshko-Lindsay, LA and Corces, VG (1997) The role of selectins in Drosophila eye and bristle development. Development 124(1), 169180. doi:10.1242/dev.124.1.169.CrossRefGoogle ScholarPubMed
Li, J, Bi, J, Zhang, P, Wang, Z, Zhong, Y, Xu, S, Wang, L and Li, B (2021) Functions of a C-type lectin with a single carbohydrate-recognition domain in the innate immunity and movement of the red flour beetle, Tribolium castaneum. Insect Molecular Biology 30(1), 90101. doi:10.1111/imb.12680.CrossRefGoogle ScholarPubMed
Lin, SJH, Cohen, LB and Wasserman, SA (2020) Effector specificity and function in Drosophila innate immunity: Getting AMPed and dropping bombs. PLOS Pathogens 16(5), e1008480. doi:10.1371/journal.ppat.1008480.CrossRefGoogle Scholar
Ling, E and Yu, XQ (2006) Cellular encapsulation and melanization are enhanced by immulectins, pattern recognition receptors from the tobacco hornworm Manduca sexta. Developmental and Comparative Immunology 30(3), 289299. doi:10.1016/j.dci.2005.05.005.CrossRefGoogle ScholarPubMed
Liu, X, Dai, F, Guo, E, Li, K, Ma, L, Tian, L, Cao, Y, Zhang, G, Palli, SR and Li, S (2015) 20-Hydroxyecdysone (20E) primary response gene E93 modulates 20E signaling to promote bombyx larval-pupal metamorphosis. Journal of Biological Chemistry 290(45), 2737027383. doi:10.1074/jbc.M115.687293.CrossRefGoogle ScholarPubMed
Lozano, J and Belles, X (2011) Conserved repressive function of Krüppel homolog 1 on insect metamorphosis in hemimetabolous and holometabolous species. Scientific Reports 1, 163. doi:10.1038/srep00163.CrossRefGoogle ScholarPubMed
Lu, Y, Su, F, Zhu, K, Zhu, M, Li, Q, Hu, Q, Zhang, J, Zhang, R and Yu, XQ (2020) Comparative genomic analysis of C-type lectin-domain genes in seven holometabolous insect species. Insect Biochemistry and Molecular Biology 126, 103451. doi:10.1016/j.ibmb.2020.103451.CrossRefGoogle ScholarPubMed
Medzhitov, R and Janeway, CA (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296(5566), 298300. doi:10.1126/science.1068883.CrossRefGoogle ScholarPubMed
Minakuchi, C, Zhou, X and Riddiford, LM (2008) Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mechanisms of Development 125(1-2), 91105. doi:10.1016/j.mod.2007.10.002.CrossRefGoogle ScholarPubMed
Natori, S, Shiraishi, H, Hori, S and Kobayashi, A (1999) The roles of Sarcophaga defense molecules in immunity and metamorphosis. Developmental and Comparative Immunology 23(4-5), 317328. doi:10.1016/s0145-305x(99)00014-2.CrossRefGoogle ScholarPubMed
Nivetha, R, Marieshwari, BN, Dev, APM, Meenakumari, M, Muralisankar, T and Janarthanan, S (2023) Evaluation of haemolymph phenoloxidase activity from the grub of Zophobas morio as a predictor of immune response. Journal of Comparative Physiology 193(5), 495507. doi:10.1007/s00360-023-01503-7.CrossRefGoogle ScholarPubMed
Ohta, M, Watanabe, A, Mikami, T, Nakajima, Y, Kitami, M, Tabunoki, H, Ueda, K and Sato, R (2006) Mechanism by which Bombyx mori hemocytes recognize microorganisms: Direct and indirect recognition systems for PAMPs. Developmental and Comparative Immunology 30(10), 867877. doi:10.1016/j.dci.2005.12.005.CrossRefGoogle ScholarPubMed
Pal, S and Wu, LP (2009) Lessons from the fly: Pattern recognition in Drosophila melanogaster. Advances in Experimental Medicine and Biology 653, 162174. doi:10.1007/978-1-4419-0901-5_11.CrossRefGoogle ScholarPubMed
Rafaluk-Mohr, C, Wagner, S and Joop, G (2018) Cryptic changes in immune response and fitness in Tribolium castaneum as a consequence of coevolution with Beauveria bassiana. Journal of Invertebrate Pathology 152, 17. doi:10.1016/j.jip.2017.12.003.CrossRefGoogle ScholarPubMed
Richards, S, Gibbs, RA, Weinstock, GM, Brown, SJ, Denell, R, Beeman, RW, Gibbs, R, Beeman, RW, Brown, SJ, Bucher, G, Friedrich, M, Grimmelikhuijzen, CJ, Klingler, M, Lorenzen, M, Richards, S, Roth, S, Schröder, R, Tautz, D, Zdobnov, EM, Muzny, D, Gibbs, RA, Weinstock, GM, Attaway, T, Bell, S, Buhay, CJ, Chandrabose, MN, Chavez, D, Clerk-Blankenburg, KP, Cree, A, Dao, M, Davis, C, Chacko, J, Dinh, H, Dugan-Rocha, S, Fowler, G, Garner, TT, Garnes, J, Gnirke, A, Hawes, A, Hernandez, J, Hines, S, Holder, M, Hume, J, Jhangiani, SN, Joshi, V, Khan, ZM, Jackson, L, Kovar, C, Kowis, A, Lee, S, Lewis, LR, Margolis, J, Morgan, M, Nazareth, LV, Nguyen, N, Okwuonu, G, Parker, D, Richards, S, Ruiz, SJ, Santibanez, J, Savard, J, Scherer, SE, Schneider, B, Sodergren, E, Tautz, D, Vattahil, S, Villasana, D, White, CS, Wright, R, Park, Y, Beeman, RW, Lord, J, Oppert, B, Lorenzen, M, Brown, S, Wang, L, Savard, J, Tautz, D, Richards, S, Weinstock, G, Gibbs, RA, Liu, Y, Worley, K, Weinstock, G, Elsik, CG, Reese, JT, Elhaik, E, Landan, G, Graur, D, Arensburger, P, Atkinson, P, Beeman, RW, Beidler, J, Brown, SJ, Demuth, JP, Drury, DW, Du, YZ, Fujiwara, H, Lorenzen, M, Maselli, V, Osanai, M, Park, Y, Robertson, HM, Tu, Z, Wang, JJ, Wang, S, Richards, S, Song, H, Zhang, L, Sodergren, E, Werner, D, Stanke, M, Morgenstern, B, Solovyev, V, Kosarev, P, Brown, G, Chen, HC, Ermolaeva, O, Hlavina, W, Kapustin, Y, Kiryutin, B, Kitts, P, Maglott, D, Pruitt, K, Sapojnikov, V, Souvorov, A, Mackey, AJ, Waterhouse, RM, Wyder, S, Zdobnov, EM, Zdobnov, EM, Wyder, S, Kriventseva, EV, Kadowaki, T, Bork, P, Aranda, M, Bao, R, Beermann, A, Berns, N, Bolognesi, R, Bonneton, F, Bopp, D, Brown, SJ, Bucher, G, Butts, T, Chaumot, A, Denell, RE, Ferrier, DE, Friedrich, M, Gordon, CM, Jindra, M, Klingler, M, Lan, Q, Lattorff, HM, Laudet, V, von Levetsow, C, Liu, Z, Lutz, R, Lynch, JA, da Fonseca, RN, Posnien, N, Reuter, R, Roth, S, Savard, J, Schinko, JB, Schmitt, C, Schoppmeier, M, Schröder, R, Shippy, TD, Simonnet, F, Marques-Souza, H, Tautz, D, Tomoyasu, Y, Trauner, J, Van der Zee, M, Vervoort, M, Wittkopp, N, Wimmer, EA, Yang, X, Jones, AK, Sattelle, DB, Ebert, PR, Nelson, D, Scott, JG, Beeman, RW, Muthukrishnan, S, Kramer, KJ, Arakane, Y, Beeman, RW, Zhu, Q, Hogenkamp, D, Dixit, R, Oppert, B, Jiang, H, Zou, Z, Marshall, J, Elpidina, E, Vinokurov, K, Oppert, C, Zou, Z, Evans, J, Lu, Z, Zhao, P, Sumathipala, N, Altincicek, B, Vilcinskas, A, Williams, M, Hultmark, D, Hetru, C, Jiang, H, Grimmelikhuijzen, CJ, Hauser, F, Cazzamali, G, Williamson, M, Park, Y, Li, B, Tanaka, Y, Predel, R, Neupert, S, Schachtner, J, Verleyen, P, Raible, F, Bork, P, Friedrich, M, Walden, KK, Robertson, HM, Angeli, S, Forêt, S, Bucher, G, Schuetz, S, Maleszka, R, Wimmer, EA, Beeman, RW, Lorenzen, M, Tomoyasu, Y, Miller, SC, Grossmann, D and Bucher, G (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452(7190), 949955. doi:10.1038/nature06784.Google ScholarPubMed
Roth, S and Hartenstein, V (2008) Development of Tribolium castaneum. Development Genes and Evolution 218(3-4), 115118. doi:10.1007/s00427-008-0215-2.CrossRefGoogle ScholarPubMed
Rutschmann, S, Kilinc, A and Ferrandon, D (2002) Cutting edge: The toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. Journal of Immunology 168(4), 15421546. doi:10.4049/jimmunol.168.4.1542.CrossRefGoogle ScholarPubMed
Sappington, TW and Raikhel, AS (1998) Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochemistry and Molecular Biology 28(5-6), 277300. doi:10.1016/s0965-1748(97)00110-0.CrossRefGoogle ScholarPubMed
Sato, S, St-Pierre, C, Bhaumik, P and Nieminen, J (2009) Galectins in innate immunity: Dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunological Reviews 230(1), 172187. doi:10.1111/j.1600-065X.2009.00790.x.CrossRefGoogle ScholarPubMed
Schnitger, AK, Yassine, H, Kafatos, FC and Osta, MA (2009) Two C-type lectins cooperate to defend Anopheles gambiae against Gram-negative bacteria. Journal of Biological Chemistry 284(26), 1761617624. doi:10.1074/jbc.M808298200.CrossRefGoogle ScholarPubMed
Shen, D, Tong, M, Guo, J, Mei, X, Xia, D, Qiu, Z and Zhao, Q (2021) A pattern recognition receptor C-type lectin-S6 (CTL-S6) is Involved in the immune response in the silkworm (Lepidoptera: Bombycidae). Journal of Insect Science 21(1). doi:10.1093/jisesa/ieaa146.CrossRefGoogle ScholarPubMed
Song, ZK, Tian, ML, Dong, YP, Ren, CB, Du, Y and Hu, J (2020) The C-type lectin IML-10 promotes hemocytic encapsulation by enhancing aggregation of hemocytes in the Asian corn borer Ostrinia furnacalis. Insect Biochemistry and Molecular Biology 118, 103314. doi:10.1016/j.ibmb.2020.103314.CrossRefGoogle ScholarPubMed
Stokes, BA, Yadav, S, Shokal, U, Smith, LC and Eleftherianos, I (2015) Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Frontiers in Microbiology 6, 19. doi:10.3389/fmicb.2015.00019.CrossRefGoogle ScholarPubMed
Sun, JJ, Lan, JF, Zhao, XF, Vasta, GR and Wang, JX (2017) Binding of a C-type lectin’s coiled-coil domain to the Domeless receptor directly activates the JAK/STAT pathway in the shrimp immune response to bacterial infection. PLOS Pathogens 13(9), e1006626. doi:10.1371/journal.ppat.1006626.CrossRefGoogle Scholar
Tabunoki, H, Dittmer, NT, Gorman, MJ and Kanost, MR (2019) Development of a new method for collecting hemolymph and measuring phenoloxidase activity in Tribolium castaneum. BMC Research Notes 12(1), 7. doi:10.1186/s13104-018-4041-y.CrossRefGoogle ScholarPubMed
Tomoyasu, Y, Miller, SC, Tomita, S, Schoppmeier, M, Grossmann, D and Bucher, G (2008) Exploring systemic RNA interference in insects: A genome-wide survey for RNAi genes in Tribolium. Genome Biology 9(1), R10. doi:10.1186/gb-2008-9-1-r10.CrossRefGoogle ScholarPubMed
Tonk, M, Knorr, E, Cabezas-Cruz, A, Valdés, JJ, Kollewe, C and Vilcinskas, A (2015) Tribolium castaneum defensins are primarily active against Gram-positive bacteria. Journal of Invertebrate Pathology 132, 208215. doi:10.1016/j.jip.2015.10.009.CrossRefGoogle ScholarPubMed
Wang, S, Ai, H, Zhang, Y, Bi, J, Gao, H, Chen, P and Li, B (2023) Functional analysis of a multiple-domain CTL15 in the innate immunity, eclosion, and reproduction of Tribolium castaneum. Cells 12(4). doi:10.3390/cells12040608.Google ScholarPubMed
Wang, W, Wang, G, Zhuo, X, Liu, Y, Tang, L, Liu, X and Wang, J (2020) C-type lectin-mediated microbial homeostasis is critical for Helicoverpa armigera larval growth and development. PLOS Pathogens 16(9), e1008901. doi:10.1371/journal.ppat.1008901.CrossRefGoogle ScholarPubMed
Wang, X, Zhang, Y, Zhang, R and Zhang, J (2019) The diversity of pattern recognition receptors (PRRs) involved with insect defense against pathogens. Current Opinion in Insect Science 33, 105110. doi:10.1016/j.cois.2019.05.004.CrossRefGoogle ScholarPubMed
Wang, Z, Luo, J, Feng, K, Zhou, Y and Tang, F (2022) Prophenoloxidase of Odontotermes formosanus (Shiraki) (Blattodea: Termitidae) is a key gene in melanization and has a defensive role during bacterial infection. International Journal of Molecular Sciences 24(1). doi:10.3390/ijms24010406.CrossRefGoogle Scholar
Weis, WI, Crichlow, GV, Murthy, HM, Hendrickson, WA and Drickamer, K (1991) Physical characterization and crystallization of the carbohydrate-recognition domain of a mannose-binding protein from rat. Journal Biological Chemistry 266(31), 2067820686.CrossRefGoogle ScholarPubMed
Weis, WI, Taylor, ME and Drickamer, K (1998) The C-type lectin superfamily in the immune system. Immunological Reviews 163, 1934. doi:10.1111/j.1600-065x.1998.tb01185.x.CrossRefGoogle ScholarPubMed
Xia, X, You, M, Rao, XJ and Yu, XQ (2018) Insect C-type lectins in innate immunity. Developmental and Comparative Immunology 83, 7079. doi:10.1016/j.dci.2017.11.020.CrossRefGoogle ScholarPubMed
Xiong, W, Gao, S, Lu, Y, Wei, L, Mao, J, Xie, J, Cao, Q, Liu, J, Bi, J, Song, X and Li, B (2019) Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. Pestic Biochem Physiol 159, 107117. doi:10.1016/j.pestbp.2019.06.005.CrossRefGoogle ScholarPubMed
Yokoi, K, Koyama, H, Ito, W, Minakuchi, C, Tanaka, T and Miura, K (2012a) Involvement of NF-κB transcription factors in antimicrobial peptide gene induction in the red flour beetle, Tribolium castaneum. Developmental and Comparative Immunology 38(2), 342351. doi:10.1016/j.dci.2012.06.008.CrossRefGoogle Scholar
Yokoi, K, Koyama, H, Minakuchi, C, Tanaka, T and Miura, K (2012b) Antimicrobial peptide gene induction, involvement of Toll and IMD pathways and defense against bacteria in the red flour beetle, Tribolium castaneum. Results in Immunology 2, 7282. doi:10.1016/j.rinim.2012.03.002.CrossRefGoogle Scholar
Yu, XQ, Gan, H and Kanost, MR (1999) Immulectin, an inducible C-type lectin from an insect, Manduca sexta, stimulates activation of plasma prophenol oxidase. Insect Biochemistry and Molecular Biology 29(7), 585597. doi:10.1016/s0965-1748(99)00036-3.CrossRefGoogle ScholarPubMed
Yu, XQ and Kanost, MR (2000) Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to gram-negative bacteria. Journal of Biological Chemistry 275(48), 3737337381. doi:10.1074/jbc.M003021200.CrossRefGoogle ScholarPubMed
Yu, XQ and Kanost, MR (2003) Manduca sexta lipopolysaccharide-specific immulectin-2 protects larvae from bacterial infection. Developmental and Comparative Immunology 27(3), 189196. doi:10.1016/s0145-305x(02)00099-x.CrossRefGoogle ScholarPubMed
Yu, XQ, Ling, E, Tracy, ME and Zhu, Y (2006) Immulectin-4 from the tobacco hornworm Manduca sexta binds to lipopolysaccharide and lipoteichoic acid. Insect Molecular Biology 15(2), 119128. doi:10.1111/j.1365-2583.2006.00618.x.CrossRefGoogle ScholarPubMed
Yuan, C, Xing, L, Wang, M, Wang, X, Yin, M, Wang, Q, Hu, Z and Zou, Z (2017) Inhibition of melanization by serpin-5 and serpin-9 promotes baculovirus infection in cotton bollworm Helicoverpa armigera. PLOS Pathogens 13(9), e1006645. doi:10.1371/journal.ppat.1006645.CrossRefGoogle ScholarPubMed
Zelensky, AN and Gready, JE (2005) The C-type lectin-like domain superfamily. Febs Journal 272(24), 61796217. doi:10.1111/j.1742-4658.2005.05031.x.CrossRefGoogle ScholarPubMed
Zhan, MY, Shahzad, T, Yang, PJ, Liu, S, Yu, XQ and Rao, XJ (2016) A single-CRD C-type lectin is important for bacterial clearance in the silkworm. Developmental and Comparative Immunology 65, 330339. doi:10.1016/j.dci.2016.08.004.CrossRefGoogle ScholarPubMed
Zhang, J, Huang, W, Yuan, C, Lu, Y, Yang, B, Wang, CY, Zhang, P, Dobens, L, Zou, Z, Wang, C and Ling, E (2017) Prophenoloxidase-mediated Ex Vivo Immunity to delay fungal infection after insect ecdysis. Frontiers in Immunology 8, 1445. doi:10.3389/fimmu.2017.01445.CrossRefGoogle ScholarPubMed
Zhang, K, Shen, L, Wang, X, Yang, H, Zhang, X, Pan, G, Li, C, Ji, H, Abbas, MN, Li, C, and Cui, H (2021) Scavenger receptor C regulates antimicrobial peptide expression by activating toll signaling in silkworm, Bombyx mori. International Journal of Biological Macromolecules 191, 396404. doi:10.1016/j.ijbiomac.2021.09.084.CrossRefGoogle ScholarPubMed
Zhang, L and Ward, R (2009) uninflatable encodes a novel ectodermal apical surface protein required for tracheal inflation in Drosophila. Developmental Biology 336(2), 201212. doi:10.1016/j.ydbio.2009.09.040.CrossRefGoogle ScholarPubMed
Zhang, P, Zhang, Y, Yang, S, Hong, Y, Du, Y, Hu, Z, Tang, J, Wang, S, Feng, F and Li, B (2022a) Functional analysis of TcCTL12 in innate immunity and development in Tribolium castaneum. International Journal of Biological Macromolecules 206, 422434. doi:10.1016/j.ijbiomac.2022.02.134.CrossRefGoogle Scholar
Zhang, R, Chen, X, Wang, Y, Bai, X, Yang, Q, Zhong, Y, Yu, XQ, Jin, F and Yang, W (2023) BmMD-2A responds to 20-hydroxyecdysone and regulates Bombyx mori silkworm innate immunity in larva-to-pupa metamorphosis. Insect Science 30(2), 411424. doi:10.1111/1744-7917.13097.CrossRefGoogle ScholarPubMed
Zhang, W, Tettamanti, G, Bassal, T, Heryanto, C, Eleftherianos, I and Mohamed, A (2021b) Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 83, 110003. doi:10.1016/j.cellsig.2021.110003.CrossRefGoogle Scholar
Zhang, X, He, Y, Cao, X, Gunaratna, RT, Chen, YR, Blissard, G, Kanost, MR and Jiang, H (2015) Phylogenetic analysis and expression profiling of the pattern recognition receptors: Insights into molecular recognition of invading pathogens in Manduca sexta. Insect Biochemistry and Molecular Biology 62, 3850. doi:10.1016/j.ibmb.2015.02.001.CrossRefGoogle ScholarPubMed
Zhang, Y, Ai, H, Wang, Y, Zhang, P, Du, L, Wang, J, Wang, S, Gao, H, and Li, B (2022b) A pattern recognition receptor C-type Lectin TcCTL14 contributes to immune response and development in the red flour beetle, Tribolium Castaneum. Insect Science 30 (5), 13631377. doi: 10.1111/1744-7917.13161.CrossRefGoogle Scholar
Zhao, P, Li, J, Wang, Y and Jiang, H (2007) Broad-spectrum antimicrobial activity of the reactive compounds generated in vitro by Manduca sexta phenoloxidase. Insect Biochemistry and Molecular Biology 37(9), 952959. doi:10.1016/j.ibmb.2007.05.001.CrossRefGoogle ScholarPubMed
Zitnan, D, Kim, YJ, Zitnanová, I, Roller, L and Adams, ME (2007) Complex steroid-peptide-receptor cascade controls insect ecdysis. General and Comparative Endocrinology 153(1-3), 8896. doi:10.1016/j.ygcen.2007.04.002.CrossRefGoogle ScholarPubMed
Zou, Z, Evans, JD, Lu, Z, Zhao, P, Williams, M, Sumathipala, N, Hetru, C, Hultmark, D and Jiang, H (2007) Comparative genomic analysis of the Tribolium immune system. Genome Biology 8(8), R177. doi:10.1186/gb-2007-8-8-r177.CrossRefGoogle ScholarPubMed
Supplementary material: File

Chen et al. supplementary material

Chen et al. supplementary material
Download Chen et al. supplementary material(File)
File 321.8 KB