Skip to main content Accessibility help

Identification and tissue expression profiling of candidate UDP-glycosyltransferase genes expressed in Holotrichia parallela motschulsky antennae

  • S. Wang (a1), Y. Liu (a1), J.-J. Zhou (a2), J.-K. Yi (a1), Y. Pan (a1), J. Wang (a1), X.-X. Zhang (a1), J.-X. Wang (a1), S. Yang (a1) and J.-H. Xi (a1)...


It is difficult to control Holotrichia parallela Motschulsky with chemical insecticides due to the larvae's soil-living habit, thus the pest has caused great economic losses in agriculture. In addition, uridine diphosphate-glycosyltransferases (UGTs) catalyze the glycosylation process of a variety of small lipophilic molecules with sugars to produce water-soluble glycosides, and play multiple roles in detoxification, endobiotic modulation, and sequestration in an insect. Some UGTs were found specifically expressed in antennae of Drosophila melanogaster and Spodoptera littoralis, and glucurono-conjugated odorants could not elicit any olfactory signals, suggesting that the UGTs may play roles in odorant inactivation by biotransformation. In the current study, we performed a genome-wide analysis of the candidate UGT family in the dark black chafer, H. parallela. Based on a UGT gene signature and the similarity of these genes to UGT homologs from other organisms, 20 putative H. parallela UGT genes were identified. Bioinformatics analysis was used to predict sequence and structural features of H. parallela UGT proteins, and revealed important domains and residues involved in sugar donor binding and catalysis by comparison with human UGT2B7. Phylogenetic analysis of these 20 UGT protein sequences revealed eight major groups, including both order-specific and conserved groups, which are common to more than one order. Of these 20 UGT genes, HparUGT1265-1, HparUGT3119, and HparUGT8312 were highly (>100-fold change) expressed in antennae, suggesting a possible role in olfactory tissue, and most likely in odorant inactivation and olfactory processing. The remaining UGT genes were expressed in all tissues (head, thorax, abdomen, leg, and wing), indicating that these UGTs likely have different biological functions. This study provides the fundamental basis for determining the function of UGTs in a highly specialized olfactory organ, the H. parallela antenna.


Corresponding author

*Author for correspondence Phone: +86-13756072796 Fax: +86-431-87836255 E-mail:


Hide All
Ahn, S.J., Badenes-Pérez, F.R., Reichelt, M., Svatoš, A., Schneider, B., Gershenzon, J. & Heckel, D.G. (2011) Metabolic detoxification of capsaicin by UDP-glycosyltransferase in three Helicoverpa species. Archives of Insect Biochemistry and Physiology 78, 104118.
Ahn, S.J., Vogel, H. & Heckel, D.G. (2012) Comparative analysis of the UDP-glycosyltransferase multigene family in insects. Insect Biochemistry and Molecular Biology 42, 133147.
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 33893402.
Barvkar, V.T., Pardeshi, V.C., Kale, S.M., Kadoo, N.Y. & Gupta, V.S. (2012) Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. BMC Genomics 13, 14712164.
Benton, R., Vannice, K.S. & Vosshall, L.B. (2007) An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450, 289293.
Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Cassarino, T.G., Bertoni, M., Bordoli, L. & Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research 42, W252W258.
Bock, K.W. (2016) The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: animal-plant arms-race and co-evolution. Biochemical Pharmacology 99, 1117.
Bozzolan, F., Siaussat, D., Maria, A., Durand, N., Pottier, M.A., Chertemps, T. & Maïbèche-Coisne, M. (2014) Antennal uridine diphosphate (UDP)-glycosyltransferases in a pest insect: diversity and putative function in odorant and xenobiotics clearance. Insect Molecular Biology 23, 539549.
Cartwright, A.M., Lim, E.K., Kleanthous, C. & Bowles, D.J. (2008) A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities. Journal of Biological Chemistry 283, 1572415731.
Duan, M., Xiong, J., Lu, D., Wang, G. & Ai, H. (2016) Transcriptome sequencing analysis and functional identification of sex differentiation genes from the mosquito parasitic nematode, Romanomermis wuchangensis. PLoS ONE 11, e0163127.
Durand, N., Carot-Sans, G., Chertemps, T., Montagné, N., Jacquin-Joly, E., Debernard, S. & Maïbèche-Coisne, M. (2010) A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth Spodoptera littoralis. Insect Molecular Biology 19, 8797.
Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R.D. & Bairoch, A. (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31, 37843788.
Hanser, H.I., Faure, P., Robert-Hazotte, A., Artur, Y., Duchamp-Viret, P., Coureaud, G. & Heydel, J.M. (2017) Odorant-odorant metabolic interaction, a novel actor in olfactory perception and behavioral responsiveness. Scientific Reports 7, 10219.
He, P., Li, Z.Q., Liu, C.C., Liu, S.J. & Dong, S.L. (2014) Two esterases from the genus Spodoptera degrade sex pheromones and plant volatiles. Genome 57, 201208.
Heydel, J., Leclerc, S., Bernard, P., Pelczar, H., Gradinaru, D., Magdalou, J., Minn, A., Artur, Y. & Goudonnet, H. (2001) Rat olfactory bulb and epithelium UDP-glucuronosyltransferase 2A1 (UGT2A1) expression: in situ mRNA localization and quantitative analysis. Molecular Brain Research 90, 8392.
Heydel, J.M., Holsztynska, E.J., Legendre, A., Thiebaud, N., Artur, Y. & Le Bon, A.M. (2010) UDP-glucuronosyltransferases (UGTs) in neuro-olfactory tissues: expression, regulation, and function. Drug Metabolism Reviews 42, 7497.
Heydel, J.M., Coelho, A., Thiebaud, N., Legendre, A., Le Bon, A.M., Faure, P., Neiers, F., Artur, Y., Golebiowski, J. & Briand, L. (2013) Odorant-binding proteins and xenobiotic metabolizing enzymes: implications in olfactory perireceptor events. The Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology 296, 13331345.
Huang, F.F., Chai, C.L., Zhang, Z., Liu, Z.H., Dai, F.Y., Lu, C. & Xiang, Z.H. (2008) The UDP-glucosyltransferase multigene family in Bombyx mori. BMC Genomics 27, 14712164.
Ju, Q., Qu, M.J., Wang, Y., Jiang, X.J., Li, X., Dong, S.L. & Han, Z.J. (2012) Molecular and biochemical characterization of two odorant-binding proteins from dark black chafer, Holotrichia parallela. Genome 55, 537546.
Ju, Q., Li, X., Jiang, X.J., Qu, M.J., Guo, X.Q., Han, Z.J. & Li, F. (2014) Transcriptome and tissue-specific expression analysis of Obp and Csp genes in the dark black chafer. Archives of Insect Biochemistry and Physiology 87, 177200.
Kojima, W., Fujii, T., Suwa, M., Miyazawa, M. & Ishikawa, Y. (2010) Physiological adaptation of the Asian corn borer Ostrinia furnacalis to chemical defenses of its host plant, maize. Journal of Insect Physiology 56, 13491355.
Krempl, C., Sporer, T., Reichelt, M., Ahn, S.J., Heidel-Fischer, H., Vogel, H., Heckel, D.G. & Joußen, N. (2016) Potential detoxification of gossypol by UDP-glycosyltransferases in the two heliothine moth species Helicoverpa armigera and Heliothis virescens. Insect Biochemistry and Molecular Biology 71, 4957.
Lazard, D., Zupko, K., Poria, Y., Nef, P., Lazarovits, J., Horn, S., Khen, M. & Lancet, D. (1991) Odorant signal termination by olfactory UDP glucuronosyl transferase. Nature 349, 790793.
Leclerc, S., Heydel, J.M., Amossé, V., Gradinaru, D., Cattarelli, M., Artur, Y., Goudonnet, H., Magdalou, J., Netter, P., Pelczar, H. & Minn, A. (2002) Glucuronidation of odorant molecules in the rat olfactory system: activity, expression and age-linked modifications of UDP-glucuronosyltransferase isoforms, UGT1A6 and UGT2A1, and relation to mitral cell activity. Molecular Brain Research 107, 201213.
Lim, E.K., Baldauf, S., Li, Y., Elias, L., Worrall, D., Spencer, S.P., Jackson, R.G., Taguchi, G., Ross, J. & Bowles, D.J. (2003) Evolution of substrate recognition across a multigene family of glycosyltransferases in Arabidopsis. Glycobiology 13, 139145.
Luque, T., Okano, K. & O'Reilly, D.R. (2002) Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase. European Journal of Biochemistry 269, 819825.
Mackenzie, P.I., Owens, I.S., Burchell, B., Bock, K.W., Bairoch, A., Bélanger, A., Fournel-Gigleux, S., Green, M., Hum, D.W. & Iyanagi, T. (1997) The UDP glycosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7, 255269.
Mackenzie, P.I., Bock, K.W., Burchell, B., Guillemette, C., Ikushiro, S., Iyanagi, T., Miners, J.O., Owens, I.S. & Nebert, D.W. (2005) Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenetics and Genomics 15, 677685.
Magdalou, J., Fournel-Gigleux, S. & Ouzzine, M. (2010) Insights on membrane topology and structure/function of UDP-glucuronosyltransferases. Drug Metabolism Reviews 42, 159166.
Mayer, U., Ungerer, N., Klimmeck, D., Warnken, U., Schnölzer, M., Frings, S. & Möhrlen, F. (2008) Proteomic analysis of a membrane preparation from rat olfactory sensory cilia. Chemical Senses 33, 145162.
Miley, M.J., Zielinska, A.K., Keenan, J.E., Bratton, S.M., Radominska-Pandya, A. & Redinbo, M.R. (2007) Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. Journal of Molecular Biology 369, 498511.
Olender, T., Keydar, I., Pinto, J.M., Tatarskyy, P., Alkelai, A., Chien, M.S., Fishilevich, S., Restrepo, D., Matsunami, H., Gilad, Y. & Lancet, D. (2016) The human olfactory transcriptome. BMC Genomics 17, 619.
Osmani, S.A., Bak, S. & Møller, B.L. (2009) Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modelling. Phytochemistry 70, 325347.
Petersen, T.N., Brunak, S., von Heijne, G. & Nielsen, H. (2011) Signalp 4.0: discriminating signal peptides from transmembrane regions. Nature Methods 8, 785786.
Pfaffl, M.W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29, e45.
Radominska-Pandya, A., Bratton, S.M., Redinbo, M.R. & Miley, M.J. (2010) The crystal structure of human UDP-glucuronosyltransferase 2B7 C-terminal end is the first mammalian UGT target to be revealed: the significance for human UGTs from both the 1A and 2B families. Drug Metabolism Reviews 42, 133144.
Robertson, H.M., Martos, R., Sears, C.R., Todres, E.Z., Walden, K.K. & Nardi, J.B. (1999) Diversity of odourant binding proteins revealed by an expressed sequence tag project on male Manduca sexta moth antennae. Insect Molecular Biology 8, 501518.
Rützler, M. & Zwiebel, L.J. (2005) Molecular biology of insect olfaction: recent progress and conceptual models. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 191, 777790.
Sasai, H., Ishida, M., Murakami, K., Tadokoro, N., Ishihara, A., Nishida, R. & Mori, N. (2009) Species-specific glucosylation of DIMBOA in larvae of the rice Armyworm. Bioscience, Biotechnology, and Biochemistry 73, 13331338.
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.
Vogt, R.G. & Riddiford, L.M. (1981) Pheromone binding and inactivation by moth antennae. Nature 293, 161163.
Wang, Q., Hasan, G. & Pikielny, C.W. (1999) Preferential expression of biotransformation enzymes in the olfactory organs of Drosophila melanogaster, the antennae. Journal of Biological Chemistry 274, 1030910315.
Wang, S., Yi, J.K., Yang, S., Liu, Y., Zhang, J.H. & Xi, J.H. (2017) Identification and characterization of microRNAs expressed in antennae of Holotrichia parallela motschulsky and their possible roles in olfactory regulation. Archives of Insect Biochemistry and Physiology 94, e21369.
Younus, F., Chertemps, T., Pearce, S.L., Pandey, G., Bozzolan, F., Coppin, C.W., Russell, R.J., Maïbèche-Coisne, M. & Oakeshott, J.G. (2014) Identification of candidate odorant degrading gene/enzyme systems in the antennal transcriptome of Drosophila melanogaster. Insect Biochemistry and Molecular Biology 53, 3043.
Zhang, J.H., Wang, S., Yang, S., Yi, J., Liu, Y. & Xi, J.H. (2016) Differential proteome analysis of the male and female antennae from Holotrichia parallela. Archives of Insect Biochemistry and Physiology 92, 274287.
Zhang, X., Zhang, Q.Y., Liu, D., Su, T., Weng, Y., Ling, G., Chen, Y., Gu, J., Schilling, B. & Ding, X. (2005) Expression of cytochrome p450 and other biotransformation genes in fetal and adult human nasal mucosa. Drug Metabolism and Disposition 33, 14231428.
Zhou, J.J. (2010) Odorant-binding proteins in insects. Vitamins and Hormones 83, 241272.
Zhou, J.J., Field, L.M. & He, X.L. (2010). Insect odorant-binding proteins: do they offer an alternative pest control strategy? Outlooks on Pest Management 21, 3134.


Type Description Title
Supplementary materials

Wang et al. supplementary material
Wang et al. supplementary material 1

 Unknown (582 KB)
582 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed