Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T04:37:43.851Z Has data issue: false hasContentIssue false

Mating interactions between two biotypes of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) in Australia

Published online by Cambridge University Press:  09 March 2007

P.J. De Barro
Affiliation:
CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia
P.J. Hart
Affiliation:
CSIRO Entomology, GPO Box 1700, Canberra, ACT 2601, Australia

Abstract

The biological consequences of mating interactions between indigenous and exotic biotypes of Bemisia tabaci (Gennadius) in Australia were studied using a combination of field and laboratory experiments. The key results of the interaction between the B and eastern Australian biotypes were reduced population increase, a marked increase in the proportion of male progeny, fewer eggs produced by females paired with males of different biotype and no difference in the numbers of eggs per unmated female and females paired with males of the same biotype. In addition, there was no change in the proportion of eggs hatching, mixed biotype pairs spent more time courting than single biotype pairs and a low level of hybridization in field cages and small containers was observed. These observations suggest three possibilities. The first is the ‘distracting male hypothesis’ in which mating pairs made up of different biotypes apportion more time to courtship and less time to egg laying than single biotype pairs. The second invokes the ‘single-locus complementary sex determination model’ in which the production of non-viable diploid male zygotes may explain the reduction in eggs laid. The third is cytoplasmic incompatibility between biotypes caused by Wolbachia. The results also suggest that the geographical distribution of clusters of related biotypes both overseas and in Australia may be explained by between-biotype interactions leading to the formation of parapatric populations.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avise, J.C. (1994) Molecular markers, natural history and evolution. London, Chapman and Hall.CrossRefGoogle Scholar
Bedford, I.D., Briddon, R.W., Brown, J.K., Rosell, R.C. & Markham, P.G. (1994) Geminivirus transmission and biological characterisation of Bemisia tabaci (Gennadius) from different geographic regions. Annals of Applied Biology 125, 311325.CrossRefGoogle Scholar
Bellows, T.S., Perring, T.M., Gill, R.J. & Headrick, D.H. (1994) Description of a species of Bemisia (Homoptera: Aleyrodidae). Annals of the Entomological Society of America 87, 195206.CrossRefGoogle Scholar
Blackman, R.L. & Cahill, M. (1998) The karyotype of Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research 88, 213215.CrossRefGoogle Scholar
Bordenstein, S.R. & Werren, J.H. (1998) Effects of A and B Wolbachia and host genotype on interspecies cytoplasmic incompatibility in Nasonia. Genetics 148, 18331844.CrossRefGoogle Scholar
Breeuwer, J.A.J., Stouthamer, R., Barns, S.M., Pelletier, D.A., Weisburg, W.G. & Werren, J.H. (1992) Phylogeny of cytoplasmic incompatibility micro-organisms in the parasitoid wasp genus Nasonia (Hymenoptera: Pteromalidae) based on 16S ribosomal DNA sequences. Insect Molecular Biology 1, 2536.CrossRefGoogle ScholarPubMed
Brown, J.K., Frohlich, D.R. & Rosell, R.C. (1995 a) The sweetpotato or silverleaf whiteflies: biotypes of Bemisia tabaci or a new species complex. Annual Review of Entomology 40, 511534.CrossRefGoogle Scholar
Brown, J.K., Coats, S.A., Bedford, I.D., Markham, P.G., Bird, J. & Frohlich, D.R. (1995 b) Characterisation and distribution of esterase electromorphs in the whitefly, Bemisia tabaci (Genn.) (Homoptera: Aleyrodidae). Biochemical Genetics 33, 205214.Google Scholar
Byers, J.R. & Hinks, C.F. (1978) Biosystematics of the genus Euoxa (Lepidoptera: Noctuidae). XI. Mating discrimination between three closely related species of the declarata group. Canadian Journal of Zoology 56, 19811987.CrossRefGoogle Scholar
Byrne, F.J., Cahill, M., Denholm, I. & Devonshire, A.L. (1995) Biochemical identification of interbreeding between B-type and Non B-type strains of the tobacco whitefly Bemisia tabaci. Biochemical Genetics 33, 1323.CrossRefGoogle ScholarPubMed
Caprio, M.A. & Hoy, M.A. (1995) Premating isolation in a simulation model generates frequency-dependent selection and alters establishment rates of resistant natural enemies. Journal of Economic Entomology 88, 205212.CrossRefGoogle Scholar
Claridge, M.F., Dawah, H.A. & Wilson, M.R. (1997) Species: the units of biodiversity. London, Chapman & Hall.Google Scholar
Cook, J.M. (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71, 421435.Google Scholar
Cook, J.M. & Crozier, R.H. (1995) Sex determination and population biology in the Hymenoptera. TREE 10, 281286.Google ScholarPubMed
Costa, H.S. & Brown, J.K. (1991) Variation in biological characteristics and esterase patterns among populations of Bemisia tabaci, and the association of one population with silverleaf symptom induction. Entomologia Expimentalis et Applicata 61, 211219.CrossRefGoogle Scholar
Costa, H.S., Brown, J.K., Sivasupramaniam, S. & Bird, J. (1993) Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Insect Science and Application 12, 255266.Google Scholar
Costa, H.S., Westcot, D.M., Ullman, D.E., Rosell, R., Brown, J.K. & Johnson, M.W. (1995) Morphological variation in Bemisia endosymbionts. Protoplasma 189, 194202.Google Scholar
De Barro, P.J. & Driver, F. (1997) Use of RAPD PCR to distinguish the B biotype from other biotypes of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Australian Journal of Entomology 36, 149152.CrossRefGoogle Scholar
De Barro, P.J., Driver, F., Trueman, J.W.H. & Curran, J.Phylogenetic relationship of world populations of Bemisia tabaci (Gennadius) using ribosomal ITS1. Molecular Phylogeny and Evolution (in press).Google Scholar
Dobzhansky, T. (1937) Genetics and the origin of species. New York, Columbia University Press.Google Scholar
Frohlich, D.R., Torres–Jerez, I., Bedford, I.D., Markham, P.G. & Brown, J.K. (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Molecular Ecology 8, 16831691.CrossRefGoogle ScholarPubMed
Grimaldi, D., James, A.C. & Jaenike, J. (1992) Systematics and modes of reproductive isolation in the holarctic Drosophila testacea species group (Diptera: Drosophilidae). Annals of the Entomological Society of America 85, 671685.CrossRefGoogle Scholar
Gunning, R.V., Byrne, F.J. & Devonshire, A.L. (1997) Electrophoretic analysis of non-B and B-biotype Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) in Australia. Australian Journal of Entomology 36, 245249.CrossRefGoogle Scholar
Hoffman, A.A. (1988) Partial cytoplasmic incompatibility between two Australian populations of Drosophila melanogaster. Entomologia Experimentalis et Applicata 48, 6167.CrossRefGoogle Scholar
Li, T.Y., Vinson, S.B. & Gerling, D. (1989) Courtship and mating behaviour of Bemisia tabaci (Homoptera: Aleyrodidae). Environmental Entomology 18, 800806.CrossRefGoogle Scholar
Liu, H.Y., Cohen, S. & Duffus, J.E. (1992) The use of isozyme patterns to distinguish sweetpotato whitefly (Bemisia tabaci) biotypes. Phytoparasitica 20, 187194.CrossRefGoogle Scholar
Majerus, M.E.N., O'Donald, P., Kearns, P.W.E. & Ireland, H. (1986) Genetics and evolution of female choice. Nature 321, 164167.CrossRefGoogle Scholar
Perring, T.M., Farrar, C.A. & Cooper, A.D. (1994) Mating behavior and competitive displacement in whiteflies. p. 25 in Henneberry, T.J., Toscano, N.C., Faust, R.M. & Coppedge, J.R. (Eds) 1994 Supplement to the five-year national research and action plan. ARS-125.Google Scholar
Rosell, R.C., Bedford, I.D., Frohlich, D.R., Gill, R.J., Brown, J.K. & Markham, P.G. (1997) Analysis of morphological variation in distinct populations of Bemisia tabaci (Homoptera: Aleyrodidae). Annals of the Entomological Society of America 90, 575589.CrossRefGoogle Scholar
Ross, K.G., Vargo, E.L., Keller, L. & Trager, J.C. (1993) Effect of a founder event on variation in the genetic sex-determinating system of the fire ant Solenopsis invicta. Genetics 135, 843854.CrossRefGoogle Scholar
Sasaki, T. & Ishikawa, H. (1999) Wolbachia infections and cytoplasmic incompatibility in the almond and the mediterranean flour moth. Zoological Science 16, 739744.CrossRefGoogle Scholar
Spollen, K.M. & Hoy, M.A. (1992) Carbaryl resistance in a laboratory-selected strain of Aphytis melinus De Bach (Hymenoptera: Aphelinidae): mode of inheritance and implications for implementation in citrus IPM. Biological Control 2, 211217.CrossRefGoogle Scholar
Sutherst, R.W. (1987) The dynamics of hybrid zones between tick (Acari) species. International Journal for Parasitology 17, 921926.CrossRefGoogle ScholarPubMed
Wang, K. & Tsai, J.H. (1996) Temperature effect on development and reproduction of silverleaf whitefly (Homoptera: Aleyrodidae). Annals of the Entomological Society of America 89, 375384.Google Scholar
Werren, J.H. (1997) Biology of Wolbachia. Annual Review of Entomology 42, 587609.CrossRefGoogle ScholarPubMed
Whiting, P.W. (1943) Multiple alleles in complementary sex determination of Habrobracon. Genetics 28, 365382.CrossRefGoogle ScholarPubMed
Wool, D., Calvert, L., Constantino, L.M., Bellotti, A.C. & Gerling, D. (1994) Differentiation of Bemisia tabaci (Genn.) (Hom., Aleyrodidae) populations in Colombia. Journal of Applied Entomology 117, 122134.CrossRefGoogle Scholar
Zar, J.H. (1984) Biostatistical analysis. New Jersey, Prentice-Hall International.Google Scholar
Zchori-Fein, E., Rousch, R.T. & Hunter, M.S. (1992) Male production induced by antibiotic treatment in Encarsia formosa (Hymenoptera: Aphelinidae), an asexual species. Experimentia 48, 102105.CrossRefGoogle Scholar