Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-24T00:07:07.440Z Has data issue: false hasContentIssue false

Natural factors regulating mustard aphid dynamics in cabbage

Published online by Cambridge University Press:  05 July 2018

E.G. Fidelis
Affiliation:
Empresa Brasileira de Pesquisa Agropecuária, EMBRAPA Roraima, Boa Vista, Roraima 69308-050, Brazil
E.S. Farias*
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
R.S. Silva
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
M.C. Lopes
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
N.R. Silva
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
M.C. Picanço
Affiliation:
Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
*
*Author for correspondence Phone: +553138994025 Fax: +553138994012 E-mail: elizeu.farias@ufv.br, elizeusf21@gmail.com

Abstract

Lipaphis erysimi (L.) Kaltenbach (Hemiptera: Aphididae) is one of the most important pests of brassica crops, mainly causing losses due to sap sucking, toxin injection and viral transmission. Knowledge about the main natural factors that regulate populations of this pest, as well as its critical mortality stage, is crucial for the development of integrated pest management of L. erysimi. Here, we determined the critical stage and key mortality factors for L. erysimi in cabbage using an ecological life table. Causes of mortality at each stage of L. erysimi development were monitored daily in the field for seven seasons. From the experimental data, we determined the key factor and critical stage of mortality through correlation and regression analyses. The nymphal stage, especially first instar nymphs, was critical for L. erysimi mortality. The key mortality factors were, in descending order of importance, physiological disturbances and predation by Syrphidae, Coccinellidae and Solenopsis ants. Therefore, control measures should target early stages of L. erysimi and the use of cabbage cultivars that have negative effects against L. erysimi may be a promising strategy for its management. Our results may be useful for plant geneticists who could develop new cabbage cultivars based on these findings. In addition, conservation measures of the main predators of L. erysimi may contribute to the natural control of this pest.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aschehoug, E.T., Sivakoff, F.S., Cayton, H.L., Morris, W.F., Haddad, N.M. & Reeve, J.D. (2015) Habitat restoration affects immature stages of a wetland butterfly through indirect effects on predation. Ecology 96, 17611767.Google Scholar
Auad, A.M. & Trevizani, R. (2005) Occurrence of aphidophagous syrphids (Diptera, Syrphidae) in Lavras, MG. Revista Brasileira de Entomologia 49, 425426.Google Scholar
Bandopadhyay, L., Basu, D. & Sikdar, S.R. (2013) Identification of genes involved in wild crucifer Rorippa indica resistance response on mustard aphid Lipaphis erysimi challenge. PLoS ONE 8, e73632.Google Scholar
Chattopadhyay, C., Agrawal, R., Kumar, A., Singh, Y.P., Roy, S.K., Khan, S.A., Bhar, L.M., Chakravarthy, N.V.K., Srivastava, A., Patel, B.S., Srivastava, B., Singh, C.P., Mehta, S.C. (2005) Forecasting of Lipaphis erysimi on oilseed Brassicas in India – a case study. Crop Protection 24, 10421053.Google Scholar
Cloyd, R.A. & Dickinson, A. (2006) Effect of insecticides on mealybug destroyer (Coleoptera: Coccinellidae) and parasitoid Leptomastix dactylopii (Hymenoptera: Encyrtidae), natural enemies of citrus mealybug (Homoptera: Pseudococcidae). Journal of Economic Entomology 99, 15961604.Google Scholar
Cloyd, R.A., Timmons, N.R.N., Goebel, J.M. & Kemp, K.E. (2009) Effect of pesticides on adult rove beetle Atheta coriaria (Coleoptera: Staphylinidae) survival in growing medium. Journal of Economic Entomology 102, 17501758.Google Scholar
D'Auria, E.M., Wohleb, C.H., Waters, T.D. & Crowder, D.W. (2016) Seasonal population dynamics of three potato pests in Washington state. Environmental Entomology 45, 781789.Google Scholar
Echegaray, E.R. & Cloyd, R.A. (2012) Effects of reduced-risk pesticides and plant growth regulators on rove beetle (Coleoptera: Staphylinidae) adults. Journal of Economic Entomology 105, 20972106.Google Scholar
Elkinton, J.S., Buonaccorsi, J.P., Bellows, T.S. & Van Driesche, R.G. (1992) Marginal attack rate, k-values and density dependence in the analysis of contemporaneous mortality factors. Researches on Population Ecology 34, 2944.Google Scholar
Filgueira, F.A.R. (2000) Novo Manual de Olericultura: agrotecnologia moderna na produção e comercialização de hortaliças. Viçosa, UFV.Google Scholar
Francke, D.L., Harmon, J.P., Harvey, C.T. & Ives, A.R. (2008) Pea aphid dropping behavior diminishes foraging efficiency of a predatory ladybeetle. Entomologia Experimentalis et Applicata 127, 118124.Google Scholar
Gish, M. & Inbar, M. (2006) Host location by apterous aphids after escape dropping from the plant. Journal of Insect Behavior 19, 143153.Google Scholar
Godoy, K.B. & Cividanes, F.J. (2002) Age-specific life tables of Lipaphis erysimi (Kalt.) (Hemiptera: Aphididae) under laboratory and field conditions. Neotropical Entomology 31, 4148.Google Scholar
Harcourt, D.G. (1969) The development and use of life tables in the study of natural insect populations. Annual Review of Entomology 14, 175196.Google Scholar
Harvey, C.T. & Eubanks, M.D. (2004) Effect of habitat complexity on biological control by the red imported fire ant (Hymenoptera: Formicidae) in collards. Biological Control 29, 348358.Google Scholar
Hattingh, V. & Tate, B. (1995) Effects of field-weathered residues of insect growth regulators on some Coccinellidae (Coleoptera) of economic importance as biocontrol agents. Bulletin of Entomological Research 85, 489493.Google Scholar
Hickman, J.M. & Wratten, S.D. (1996) Use of Phacelia tanacetifolia strips to enhance biological control of aphids by hoverfly larvae in cereal fields. Journal of Economic Entomology 89, 832840.Google Scholar
INMET (2017) Instituto Nacional de Meteorologia. Available online at http://www.inmet.gov.br/portal/ (accessed 22 November 2017).Google Scholar
Kumar, S., Atri, C., Sangha, M.K. & Banga, S.S. (2011) Screening of wild crucifers for resistance to mustard aphid, Lipaphis erysimi (Kaltenbach) and attempt at introgression of resistance gene(s) from Brassica fruticulosa to Brassica juncea. Euphytica 179, 461470.Google Scholar
Kunert, G., Otto, S., Röse, U.S.R., Gershenzon, J. & Weisser, W.W. (2005) Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecology Letters 8, 596603.Google Scholar
Lamb, R.J.L., Smith, M.A.H. & Bodnaryk, R.P. (1993) Leaf waxiness and the performance of Lipaphis erysimi (kaltenbach) (Homoptera: Aphididae) on three brassica crops. The Canadian Entomologist 125, 10231031.Google Scholar
Liu, S.-S. & Meng, X.-D. (2000) Modelling development time of Lipaphis erysimi (Hemiptera: Aphididae) at constant and variable temperatures. Bulletin of Entomological Research 90, 337347.Google Scholar
Liu, T.X. & Chen, T.Y. (2001) Effects of a juvenile hormone analog, pyriproxyfen, on the apterous form of Lipaphis erysimi. Entomologia Experimentalis et Applicata 98, 295301.Google Scholar
Liu, T.X. & Stansly, P.A. (2004) Lethal and sublethal effects of two insect growth regulators on adult Delphastus catalinae (Coleoptera: Coccinellidae), a predator of whiteflies (Homoptera: Aleyrodidae). Biological Control 30, 298305.Google Scholar
Mendel, Z., Blumberg, D. & Ishaaya, I. (1994) Effects of some insect growth regulators on natural enemies of scale insects (Hom.: Coccoidea). Entomophaga 39, 199209.Google Scholar
Michaud, J.P. & Belliure, B. (2001) Impact of syrphid predation on production of migrants in colonies of the brown citrus aphid, Toxoptera citricida (Homoptera: Aphididae). Biological Control 21, 9195.Google Scholar
Naranjo, S.E. & Ellsworth, P.C. (2009) The contribution of conservation biological control to integrated control of Bemisia tabaci in cotton. Biological Control 51, 458470.Google Scholar
Naranjo, S.E., Ellsworth, P.C. & Hagler, J.R. (2004) Conservation of natural enemies in cotton: role of insect growth regulators in management of Bemisia tabaci. Biological Control 30, 5272.Google Scholar
Newton, E., Bullock, J.M. & Hodgson, D. (2009) Bottom-up effects of glucosinolate variation on aphid colony dynamics in wild cabbage populations. Ecological Entomology 34, 614623.Google Scholar
Obrycki, J.J., Harwood, J.D., Kring, T.J. & O'Neil, R.J. (2009) Aphidophagy by Coccinellidae: Application of biological control in agroecosystems. Biological Control 51, 244254.Google Scholar
Peel, M.C., Finlayson, B.L. & McMahon, T.A. (2007) Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11, 16331644.Google Scholar
Pereira, E.J.G., Picanço, M.C., Bacci, L., Crespo, A.L.B. & Guedes, R.N.C. (2007) Seasonal mortality factors of the coffee leafminer, Leucoptera coffeella. Bulletin of Entomological Research 97, 421432.Google Scholar
Pereira, R.R., Neves, D.V.C., Campos, J.N., Santana, P.A. Jr., Hunt, T.E. & Picanço, M.C. (2018) Natural biological control of Chrysodeixis includens. Bulletin of Entomological Research 112.Google Scholar
Podoler, H. & Rogers, D. (1975) A new method for the identification of key factors from life-table data. Journal of Animal Ecology 44, 85114.Google Scholar
Powell, G., Tosh, C.R. & Hardie, J. (2006) Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annual Review of Entomology 51, 309330.Google Scholar
Rakhshani, E., Tomanović, Ž., Starý, P., Talebi, A.-A., Kavallieratos, N.G., Zamani, A.-A. & Stamenković, S. (2008) Distribution and diversity of wheat aphid parasitoids (Hymenoptera: Braconidae: Aphidiinae) in Iran. European Journal of Entomology 105, 863870.Google Scholar
Ram, S., Gupta, M.P. & Maurya, R.P. (1989) Mustard varieties resistant to aphid (Lipaphis erysimi Kalt) in India. Tropical Pest Management 35, 150153.Google Scholar
Ramsden, M.W., Menéndez, R., Leather, S.R. & Wäckers, F. (2014) Optimizing field margins for biocontrol services: the relative role of aphid abundance, annual floral resources, and overwinter habitat in enhancing aphid natural enemies. Agriculture, Ecosystems and Environment 199, 94104.Google Scholar
Rana, J.S. (2005) Performance of Lipaphis erysimi (Homoptera: Aphididae) on different Brassica species in a tropical environment. Journal of Pest Science 78, 155160.Google Scholar
Rup, P.J. & Gill, R.K. (1993) Developmental and morphogenetic responses of mustard aphid, Lipaphis erysimi (Kalt) to Methoprene (JHA). International Journal of Tropical Insect Science 14, 173177.Google Scholar
Semeão, A.A., Martins, J.C., Picanço, M.C., Chediak, M., Silva, E.M. & Silva, G.A. (2012) Seasonal variation of natural mortality factors of the guava psyllid Triozoida limbata. Bulletin of Entomological Research 102, 719729.Google Scholar
Silva, E.M., Silva, R.S., Silva, N.R., Milagres, C.C., Bacci, L. & Picanço, M.C. (2017) Assessment of the natural control of Neoleucinodes elegantalis in tomato cultivation using ecological life tables. Biocontrol Science and Technology 27, 525538.Google Scholar
Snyder, W.E. & Ives, A.R. (2003) Interactions between specialist and generalist natural enemies: Parasitoids, predators, and pea aphid biocontrol. Ecology 84, 91107.Google Scholar
Soleyman-Nezhadiyan, E. & Laughlin, R. (1998) Voracity of larvae, rate of development in eggs, larvae and pupae, and flight seasons of adults of the hoverflies Melangyna viridiceps Macquart and Symosyrphus grandicornis Macquart (Diptera: Syrphidae). Australian Journal of Entomology 37, 243248.Google Scholar
Southwood, R. & Henderson, P.A. (2000) Ecological Methods. 3rd edn. Oxford, Blackwell Science.Google Scholar
Sultana, S., Baumgartner, J.B., Dominiak, B.C., Royer, J.E. & Beaumont, L.J. (2017) Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Scientific Reports 7, 13025.Google Scholar
Sylvester, E.S. (1987) Viruses transmitted by aphids. pp. 6583 in Minks, A.K. & Harrewijn, P. (Eds) Aphids: Their Biology, Natural Enemies and Control Volume 2C. New York, Elsevier.Google Scholar
Tenhumberg, B. & Poehling, H.M. (1995) Syrphids as natural enemies of cereal aphids in Germany: aspects of their biology and efficacy in different years and regions. Agriculture, Ecosystems and Environment 52, 3943.Google Scholar
Varley, G., Gradwell, G. & Hassell, M. (1974) Insect Population Ecology: An Analytical Approach. Berkeley, University of California Press.Google Scholar
Wang, L., Wang, Z., Zeng, L. & Lu, Y. (2016) Red imported fire ant invasion reduces the populations of two banana insect pests in South China. Sociobiology 63, 889.Google Scholar
White, A.J., Wratten, S.D., Berry, N.A. & Weigmann, U. (1995) Habitat manipulation to enhance biological control of Brassica pests by hover flies (Diptera: Syrphidae). Journal of Economic Entomology 88, 11711176.Google Scholar
Wilby, A. & Thomas, M.B. (2002) Natural enemy diversity and pest control: patterns of pest emergence with agricultural intensification. Ecology Letters 5, 353360.Google Scholar