Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-15T10:15:28.061Z Has data issue: false hasContentIssue false

On the specific identity of specimens of Phytoseiulus longipes Evans (Mesostigmata: Phytoseiidae) showing different feeding behaviours: morphological and molecular analyses

Published online by Cambridge University Press:  17 February 2010

M.-S. Tixier*
Affiliation:
Montpellier SupAgro, Unité Mixte de Recherche no. 1062 Centre de Biologie et de Gestion des Populations, bâtiment 16, 2 Place Pierre Viala, 34060Montpellier cedex 01, France
M. Ferrero
Affiliation:
Montpellier SupAgro, Unité Mixte de Recherche no. 1062 Centre de Biologie et de Gestion des Populations, bâtiment 16, 2 Place Pierre Viala, 34060Montpellier cedex 01, France
M. Okassa
Affiliation:
Montpellier SupAgro, Unité Mixte de Recherche no. 1062 Centre de Biologie et de Gestion des Populations, bâtiment 16, 2 Place Pierre Viala, 34060Montpellier cedex 01, France
S. Guichou
Affiliation:
Montpellier SupAgro, Unité Mixte de Recherche no. 1062 Centre de Biologie et de Gestion des Populations, bâtiment 16, 2 Place Pierre Viala, 34060Montpellier cedex 01, France
S. Kreiter
Affiliation:
Montpellier SupAgro, Unité Mixte de Recherche no. 1062 Centre de Biologie et de Gestion des Populations, bâtiment 16, 2 Place Pierre Viala, 34060Montpellier cedex 01, France
*
*Author for correspondence Fax: 00 33 4 99 61 23 93 E-mail: tixier@supagro.inra.fr

Abstract

This paper focuses on the differentiation of specimens, identified as Phytoseiulus longipes, collected in four countries: Argentina, Brazil, Chile and South Africa. Two of these populations are known to feed and develop on Tetranychus evansi, whereas the two others do not. As morphologically similar specimens can sometimes belong to different species and because differences in predatory behaviours exist among the four populations considered, we tested for the presence of cryptic species. Morphological and molecular experiments (12S rDNA) were carried out. The four studied populations of P. longipes could be morphologically differentiated thanks to a combination of characters. However, these morphological differences are very small. The two populations that feed and develop on T. evansi (from Argentina and Brazil) are morphologically closer to each other than to the two other populations. Genetic distances among the four populations of P. longipes were very low, suggesting that despite their different feeding habits, all specimens belong to the same species. However, the populations associated with T. evansi showed some genetic differentiation from those that do not use this pest. This is the first time that this type of differentiation has been reported for the family Phytoseiidae. These results are of primary importance to ensure the success of biological control programs and to develop strains adapted to both crops and prey species.

Type
Research Paper
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, A.A., Vala, F. & Sabelis, M.W. (2002). Induction of preference and performance after acclimation to novel hosts in a phytophagous spider mite: adapative plasticity. American Naturalist 159(5), 553565.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2003a) A review of the subfamilies Amblyseiinae (Acari: Phytoseiidae): Part II. Neoseiulini new tribe. International Journal of Acarology 29, 346.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2003b) A review of the subfamilies Amblyseiinae (Acari: Phytoseiidae): Part II. The tribe Kampimodromini. International Journal of Acarology 29, 179224.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2004a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part III. The tribe Amblyseiini Wainstein, subtribe Amblyseiina N. subtribe. International Journal of Acarology 30, 171228.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2004b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part IV. The tribe Amblyseiini Wainstein, subtribe Arrenoseiina Chant and McMurtry. International Journal of Acarology 30, 291312.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2005a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part V. Tribe Amblyseiini, subtribe Proprioseiopsina Chant and McMurtry. International Journal of Acarology 31, 3–22.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2005b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VI. The tribe Euseiini N. tribe, subtribes Typhlodromalina, N. subtribe, Euseiina N. subtribe and Ricoseiina N. subtribe. International Journal of Acarology 31, 187224.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2005c) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VII. Typhlodromipsini n. tribe. International Journal of Acarology 31, 315340.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2006a) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VIII. The tribes Macroseiini Chant, Denmark and Baker, Phytoseiulini n. tribe, Africoseiulini n. tribe and Indoseiulini Ehara and Amano. International Journal of Acarology 32, 1325.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2006b) A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part IX. An overview. International Journal of Acarology 32, 125152.CrossRefGoogle Scholar
Chant, D.A. & McMurtry, J.A. (2007) Illustrated Keys and Diagnoses for the Genera and Subgenera of the Phytoseiidaeof the World (Acari: Mesostigmata). 220 pp. Michigan, USA, Indira Publishing House West Bloomfield.Google Scholar
Eubanks, M.D., Blair, C.P. & Abrahamson, W.G. (2003) One host shift leads to another? evidence of host-race formation in a predaceous gall-boring beetle. Evolution 57, 168172.Google Scholar
Ferreira, J., Eshuis, B. & Janssen, A. (2008) Domatia reduce larval cannibalism in predatory mites. Ecological Entomology 33, 374379.CrossRefGoogle Scholar
Ferrero, M., Moraes, G.J., Kreiter, S., Tixier, M.-S. & Knapp, M. (2007) Life tables of Phytoseiulus longipes feeding on Tetranychus evansi at four temperatures (Acari: Phytoseiidae, Tetranychidae). Experimental and Applied Acarology 41, 4553.CrossRefGoogle ScholarPubMed
Ferrero, M., Kreiter, S. & Tixier, M.-S. (2008) Ability of Phytoseiulus longipes to control spider mite pests on tomato in European greenhouses. pp. 461468 in Proceedings of the 6th EURAAC. Integrative Acarology, 2125 July 2008, Montpellier.Google Scholar
Furtado, I.P., Moraes, G.J., Kreiter, S., Tixier, M.-S. & Knapp, M. (2007) Potential of a Brazilian population of the predatory mite Phytoseiulus longipes as a biological control agent of Tetranychus evansi (Acari: Phytoseiidae, Tetranychidae). Biological Control 42(2), 139147.CrossRefGoogle Scholar
Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of Biological Sciences 270, 313321.CrossRefGoogle ScholarPubMed
Holder, M. & Lewis, P.O. (2003) Phylogeny estimation: traditional and bayesian approaches. Nature reviews genetics 4, 275284.CrossRefGoogle ScholarPubMed
Jarosik, V. (1990) Phytoseiulus persimilis and its prey Tetranychus urticae on glasshouse cucumber and peppers: key factors related to biocontrol efficiency. Acta Entomologica Bohemoslovaca 87, 414430.Google Scholar
Jeyaprakash, A. & Hoy, M.A. (2002) Mitochondrial 12S rRNA sequences used to design a molecular ladder assay to identify six commercially available phytoseiids (Acari: Phytoseiidae). Biological Control 25(2), 136142.CrossRefGoogle Scholar
Jordal, B.H. & Hewitt, G.M. (2004) The origin and radiation of macaronesian beetles breeding in Euphorbia: The relative importance of multiple data partitions and population sampling. Systematic Biology 53, 711734.CrossRefGoogle ScholarPubMed
Jukes, T.H. & Cantor, C.R. (1969) Evolution of protein molecules. pp. 21–132 in Munro, H.N. (Ed.) Mammalian Protein Metabolism. New York, USA, Academic Press.CrossRefGoogle Scholar
Kant, M.R., Sabelis, M.W., Haring, M.A. & Schuuring, R.C. (2008) Intraspecific variation in a generalist herbivore accounts for differential induction and impact of host plant defences. Proceedings of the Royal Society of London. Series B, Biological Sciences 275(1633), 443452.Google Scholar
Karban, R., Loeb, G.E., Walker, M.A. & Thaler, J. (1995) Abundance of phytoseiid mites on Vitis species: effects of leaf hairs, domatia, prey abundance plant phylogeny. Experimental and Applied Acarology 19, 189197.CrossRefGoogle Scholar
Kennedy, G.G. (2003) Tomato, pest, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annual Review of Entomology 48, 5172.CrossRefGoogle Scholar
Koller, M., Knapp, M. & Schausberger, P. (2007) Direct and indirect adverse effects of tomato on the predatory mite Neoseiulus californicus feeding on the spider mite Tetranychus evansi. Entomologia Experimentalis et Applicata 125, 297305.CrossRefGoogle Scholar
Kreiter, S. & Tixier, M.-S. (2006) A new genus and a new species of Phytoseiid mites (Acari: Mesostigmata) from Southern Tunisia with analysis and discussion on its phylogenetic position. Zootaxa 1237, 118.CrossRefGoogle Scholar
Lindquist, E.E. & Evans, G.W. (1965) Taxonomic concepts in the Ascidae, with a modified setal nomenclature for the idiosoma of the Gamasina (Acarina: Mesostigmata). Memoirs of the Entomological Society of Canada 47, 164.Google Scholar
Mahr, D.L. & McMurtry, J.A. (1979) Cross-breeding studies involving populations of Typhlodromus citri Garman and McGregor, T. arboreus Chant, and a sibling species of each (Mesostigmata: Phytoseiidae). International Journal of Acarology 5, 155161.CrossRefGoogle Scholar
McMurtry, J.A. & Badii, M.H. (1989) Reproductive compatibility in widely separated populations of three species of phytoseiid mites (Acari: Phytoseiidae). Pan-Pacific Entomologist 65(4), 397402.Google Scholar
McMurtry, J.A. & Croft, B.A. (1997) Life-styles of Phytoseiid mites and their roles in biological control. Annual Review of Entomology 42, 291321.CrossRefGoogle ScholarPubMed
McMurtry, J.A., Mahr, D.L. & Johnson, H.G. (1976) Geographic races in the predaceous mite, Amblyseius potentillae (Acari: Phytoseiidae). International Journal of Acarology 2, 2328.CrossRefGoogle Scholar
McMurtry, J.A., Badii, M.H. & Congdon, B.D. (1985) Studies on a Euseius species complex on avocado in Mexico and Central America, with a description of a new species (Acari: Phytoseiidae). International Journal of Acarology 26, 107116.Google Scholar
Moraes, G.J. & McMurtry, J.A. (1985) Comparison of Tetranychus evansi and Tetranychus urticae (Acari: Tetranychidae) as prey for eight species of phytoseiid mites. Entomophaga 30(4), 393397.CrossRefGoogle Scholar
Moraes, G.J., McMurtry, J.A. & Denmark, H.A. (1986) A Catalog of the Mite Family Phytoseiidae: References to Taxonomy, Synonymy, Distribution and Habitat. 353 pp. Brasilia, Brazil, EMBRAPA – DDT.Google Scholar
Moraes, G.J., McMurtry, J.A., Denmark, H.A. & Campos, C.B. (2004) A revised catalog of the mite family Phytoseiidae. Zootaxa 434, 1494.CrossRefGoogle Scholar
Murrell, A., Campbell, N.H. & Barker, S.C. (2001) A total evidence phylogeny of ticks provides insights into the evolution of life cycles and biogeography. Molecular Phylogenetic Evolution 21(2), 244258.CrossRefGoogle ScholarPubMed
Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P. & Nieves-Aldrey, J.L. (2004) Bayesian phylogenetic analysis of combined data. Systematic Biology 53, 4767.CrossRefGoogle ScholarPubMed
Okassa, M., Tixier, M.-S., Cheval, B. & Kreiter, S. (2009) Molecular and morphological evidence for new species status within the genus Euseius (Acari: Phytoseiidae). Canadian Journal of Zoology 87, 689698.CrossRefGoogle Scholar
Posada, D. & Crandall, K.A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817818.CrossRefGoogle ScholarPubMed
R Development Core Team (2009) R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org (accessed March 2009).Google Scholar
Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford) 19, 15721574.CrossRefGoogle ScholarPubMed
Rowell, H.J., Chant, D.A. & Hansell, R.I.C. (1978) The determination of setal homologies and setal patterns on the dorsal shield in the family Phytoseiidae (Acarina: Mesostigmata). The Canadian Entomologist 110, 859876.CrossRefGoogle Scholar
Sabelis, M.W. (1999) Evolution of plant-predator mutualisms: an introduction to the symposium. pp. 205213in Needham, G.R., Mitchell, R., Horn, D.J. & Welbourn, W.C. (Eds) Acarology IX Symposia. Columbus, Ohio, USA, Biological Survey.Google Scholar
Seelmann, L., Auer, A., Hoffmann, D. & Schausberger, P. (2007) Leaf pubescence mediates intraguild predation between predatory mites. Oikos 116, 807817.CrossRefGoogle Scholar
Skirvin, D.J. & Fenlon, J.S. (2001) Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): implications for biological control. Bulletin of Entomological Research 91, 6167.CrossRefGoogle ScholarPubMed
StatSoft France (2005) STATISTICA (logiciel d'analyse de données), version 7.1. Available online at http://www.statsoft.fr (accessed March 2009).Google Scholar
Tajima, R., Ohashi, K. & Takafuji, A. (2007) Specific adaptation of sumpatric populations of the Kanzawa spider mite Tetranychus kanzawai (Acari: Tetranychidae) to three host plants. Journal of the Acarological Society of Japan 16(1), 2127.CrossRefGoogle Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. (2007) MEGA 4: Molecular Evolutionary Genetics 20 Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 15961599.CrossRefGoogle Scholar
Tixier, M.-S., Kreiter, S., Cheval, B. & Auger, P. (2003) Morphometric variation between populations of Kampimodromus aberrans (Oudemans) (Acari: Phytoseiidae). Implications for the taxonomy of the genus. Invertebrate Systematics 17(2), 349358.CrossRefGoogle Scholar
Tixier, M.-S., Kreiter, S., Croft, B.A. & Cheval, B. (2004) Morphological and molecular differences in the genus Kampimodromus Nesbitt. Implications for taxonomy. Phytophasga 14, 361375.Google Scholar
Tixier, M.-S., Kreiter, S., Barbar, Z., Ragusa, S. & Cheval, B. (2006) The status of two cryptic species: Typhlodromus exhilaratus Ragusa and Typhlodromus phialatus Athias-Henriot (Acari: Phytoseiidae): consequences for taxonomy. Zoologica scripta 35, 115122.CrossRefGoogle Scholar
Tixier, M.-S., Guichou, S. & Kreiter, S. (2008) Morphological variation of the species Neoseiulus californicus (McGregor) (Acari: Phytoseiidae): importance for diagnostic reliability and synonymies. Invertebrate Systematics 22, 453469.CrossRefGoogle Scholar
Walter, D.E. (1992) Leaf surface structure and the distribution of Phytoseius mites (Acarina: Phytoseiidae) in South-eastern Australian forests. Australian Journal of Zoology 40, 593603.CrossRefGoogle Scholar
Walter, D.E. (1996) Living on leaves: mites, tomenta, and leaf domatia. Annual Review of Entomology 41, 101114.CrossRefGoogle ScholarPubMed
Walter, D.E. & O'Dowd, D.J. (1992) Leaf morphology and predators: effect of leaf domatia on the abundance of predatory mites (Acari: Phytoseiidae). Environmental Entomology 21(3), 478484.CrossRefGoogle Scholar