Hostname: page-component-5b777bbd6c-w9n4q Total loading time: 0 Render date: 2025-06-18T12:54:43.502Z Has data issue: false hasContentIssue false

Role of glutathione S-transferase gene SfGSTs2 in the host plant adaptation of the polyphagous pest Spodoptera frugiperda

Published online by Cambridge University Press:  13 June 2025

Qianqian Li
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Fan Yang
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Renwen Zheng
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Zihan Chen
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Jinhui Zhang
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Sihan Lu
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Jun Peng
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Yue Liu
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Dongyan Huang
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Yangjunlu Shen
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Cui Liu
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
Qingfeng Tang*
Affiliation:
School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, 230036, China Anhui Province Key Laboratory of Integrated Pest Management on Crops, Anhui Agricultural University, Hefei, 230036, China Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, 230036, China
*
Corresponding author: Qingfeng Tang; Email: tangqf@ahau.edu.cn

Abstract

The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a highly destructive polyvorous pest with a wide host range and the ability to feed continuously with seasonal changes. This destructive pest significantly damages crops and can also utilize non-agricultural plants, such as weeds, as alternative hosts. However, the adaptation mechanisms of S. frugiperda when switching between crop and non-crop hosts remain poorly understood, posing challenges for effective monitoring and integrated pest management strategies. Therefore, this study aims to elucidate the adaptability of S. frugiperda to different host plants. Results showed that corn (Zea mays L.) was more suitable for the growth and development of S. frugiperda than wheat (Triticum aestivum L.) and goosegrass (Eleusine indica). Transcriptome analysis identified 699 genes differentially expressed when fed on corn, wheat, and goosegrass. The analysis indicated that the detoxification metabolic pathway may be related to host adaptability. We identified only one SfGSTs2 gene within the GST family and investigated its functional role across different developmental stages and tissues by analysing its spatial and temporal expression patterns. The SfGSTs2 gene expression in the midgut of larvae significantly decreased following RNA interference. Further, the dsRNA-fed larvae exhibited a decreased detoxification ability, higher mortality, and reduced larval weight. The findings highlight the crucial role of SfGSTs2 in host plant adaptation. Evaluating the feeding preferences of S. frugiperda is significant for controlling important agricultural pests.

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

#

These authors have contributed equally to this work

References

Abbasi, E and Daliri, S (2024b) Knockdown resistance (kdr) associated organochlorine resistance in mosquito-borne diseases (Anopheles subpictus): systematic reviews study. Research Square. doi:10.21203/rs.3.rs-4358998/v1CrossRefGoogle Scholar
Abbasi, E, Daliri, S and Bonizzoni, M (2024a) Knockdown resistance (kdr) associated organochlorine resistance in mosquito-borne diseases (Culex quinquefasciatus): Systematic study of reviews and meta-analysis. PLOS Neglected Tropical Diseases 18, e0011991. doi:10.1371/journal.pntd.0011991CrossRefGoogle Scholar
Abbasi, E, Daliri, S, Mohseni, S, Zamani, AA, Alivand, N and Moemenbellah-Fard, MD (2025a) Knockdown resistance associated organochlorine resistance in mosquito–borne diseases (Anopheles culicifacies): A systematic review. Asian Pacific Journal of Tropical Medicine 18, 39. doi:10.4103/apjtm.apjtm_26_24CrossRefGoogle Scholar
Abbasi, E, Daliri, S, Talbalaghi, A, Mehrpouya, F, Arab, MH, Aslvaeli, A and Moemenbellah-Fard, MD (2025b) Knockdown resistance (kdr)-associated organochlorine resistance in mosquito-borne diseases (Culex pipiens): A systematic review and meta-analysis. Heliyon 11, e41571. doi:10.1016/j.heliyon.2024.e41571CrossRefGoogle Scholar
Adeyinka, OS, Riaz, S, Toufiq, N, Yousaf Ibhatti, MU, Batcho, A, Olajide, AA, Nasir, IA and Tabassum, B (2020) Advances in exogenous RNA delivery techniques for RNAi-mediated pest control. Molecular Biology Reports 47, 63096319. doi:10.1007/s11033-020-05666-2CrossRefGoogle ScholarPubMed
Borzoui, E, Naseri, B and Rahimi Namin, F (2015) Different diets affecting biology and digestive physiology of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Journal of Stored Products Research 62, 17. doi:10.1016/j.jspr.2015.03.003CrossRefGoogle Scholar
Bustin, SA, Benes, V, Garson, JA, et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry 55, 611622. doi:10.1373/clinchem.2008.112797CrossRefGoogle ScholarPubMed
Carrasco, D, Larsson, MC and Anderson, P (2015) Insect host plant selection in complex environments. Current Opinion in Insect Science 8, 17. doi:10.1016/j.cois.2015.01.014CrossRefGoogle ScholarPubMed
Chen, JL, Ni, HX and Sun, JR (2002) The resistance threshold and interaction of several plant secondary metabolites to wheat aphid. Acta Phytophylacica Sinica 29, 712.Google Scholar
Choi, M-Y and Vander Meer, RK (2019) Phenotypic effects of PBAN RNAi using oral delivery of dsRNA to corn earworm (Lepidoptera: Noctuidae) and tobacco budworm larvae. Journal of Economic Entomology 112, 434439. doi:10.1093/jee/toy356CrossRefGoogle ScholarPubMed
Després, L, David, J-P and Gallet, C (2007) The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology and Evolution 22, 298307. doi:10.1016/j.tree.2007.02.010CrossRefGoogle ScholarPubMed
El-Refaie, RM, et al (2024) Effect of four host plants on the life history and nutritional indices of Spodoptera littoralis. International Journal of Tropical Insect Science 44, 10911101. doi:10.1007/s42690-024-01220-wCrossRefGoogle Scholar
Fang, M, Lu, SH, Yao, L, Li, GT, Zheng, RW, and Tang, QF (2022) Effects of different host-plant components on physiological indices in Spodoptera Frugiperda. In Interciencia 47, 335. doi:10.21203/rs.3.rs-1398600/v1Google Scholar
Fang, M, Yao, L, Tang, QF, Li, GT and Jiang, XC (2020) Feeding adaptability of fall armyworm Spodoptera frugiperda to several weeds. Journal of Plant Protection 47, 10551061. doi:10.13802/j.cnki.zwbhxb.2020.2020166Google Scholar
Francis, F, Vanhaelen, N and Haubruge, E (2005) Glutathione S-transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Archives of Insect Biochemistry and Physiology 58, 166174. doi:10.1002/arch.20049CrossRefGoogle ScholarPubMed
Frova, C (2003) The plant glutathione transferase gene family: Genomic structure, functions, expression and evolution. Physiologia Plantarum 119, 469479. doi:10.1046/j.1399-3054.2003.00183.xCrossRefGoogle Scholar
Fürstenberg-Hägg, J, Zagrobelny, M and Bak, S (2013) Plant defense against insect herbivores. International Journal of Molecular Sciences 14, 1024210297. doi:10.3390/ijms140510242CrossRefGoogle ScholarPubMed
Gao, YQ, Ji, MJ, Li, SH, Wang, SG, Zhao, YF, Xu, YY, Chen, ZZ, Sun, JH, Kang, ZW and Liu, FH (2024) Comparison of gut transcriptome and bacterial composition of the yellow peach moth, Conogethes punctiferalis larvae associated with host plants adaptation. CABI Agriculture and Bioscience 5, 59. doi:10.1186/s43170-024-00267-6CrossRefGoogle Scholar
Garcia, AG, Godoy, WAC, Thomas, JMG, Nagoshi, RN and Meagher, RL (2018) Delimiting Strategic Zones for the Development of Fall Armyworm (Lepidoptera: Noctuidae) on Corn in the State of Florida. Journal of Economic Entomology 111, 120126. doi:10.1093/jee/tox329CrossRefGoogle ScholarPubMed
Gouin, A, Bretaudeau, A, Nam, K, Gimenez, S, Aury, J-M, Duvic, B, Hilliou, F and Durand, N (2017) Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Scientific Reports 7, 11816. doi:10.1038/s41598-017-10461-4CrossRefGoogle ScholarPubMed
Gui, Z, Hou, C, Liu, T, Qin, G, Li, M and Jin, B (2009) Effects of insect viruses and pesticides on glutathione s-transferase activity and gene expression in Bombyx mori. Journal of Economic Entomology 102, 15911598. doi:10.1603/029.102.0425CrossRefGoogle ScholarPubMed
Hafeez, M, Li, X, Chen, L, Ullah, F, Huang, J, Zhang, ZJ, Zhang, JM, Siddiqui, JA, Zhou, S-X, Ren, X-Y, Imran, M, Assiri, MA, Lou, YG and Lu, YB (2023) Molecular characterization and functional analysis of cytochrome P450-mediated detoxification CYP302A1 gene involved in host plant adaptation in Spodoptera frugieprda. Frontiers in Plant Science 13, 079442. doi:10.3389/fpls.2022.1079442CrossRefGoogle ScholarPubMed
Hafeez, M, Li, X-W, Zhang, J-M, VZhang, Z-J, Huang, J, Wang, L-K, Khan, MM, Shah, S, Fernández‐Grandon, GM and Lu, Y-B (2021) Role of digestive protease enzymes and related genes in host plant adaptation of a polyphagous pest, Spodoptera frugiperda. Insect Science 28, 611626. doi:10.1111/1744-7917.12906CrossRefGoogle ScholarPubMed
He, L-M, Zhao, S-Y, Gao, X-W and Wu, K-M (2021) Ovipositional responses of Spodoptera frugiperda on host plants provide a basis for using Bt-transgenic maize as trap crop in China. Journal of Integrative Agriculture 20, 804814. doi:10.1016/S2095-3119(20)63334-2CrossRefGoogle Scholar
He, L, Shi, Y, Ding, W, Huang, H, He, H, Xue, J, Gao, Q, Zhang, ZX, Li, YZ and Qiu, L (2023) Cytochrome P450s genesCYP321A9andCYP9A58contribute to host plant adaptation in the fall armyworm Spodoptera frugiperda. Pest Management Science 79, 17831790. doi:10.1002/ps.7355CrossRefGoogle ScholarPubMed
Heidel-Fischer, HM and Vogel, H (2015) Molecular mechanisms of insect adaptation to plant secondary compounds. Current Opinion In Insect Science 8, 814. doi:10.1016/j.cois.2015.02.004CrossRefGoogle ScholarPubMed
Huang, Y, Xu, Z, Lin, X, Feng, Q and Zheng, S (2011) Structure and expression of glutathione S-transferase genes from the midgut of the common cutworm, Spodoptera litura (Noctuidae) and their response to xenobiotic compounds and bacteria. Journal of Insect Physiology 57, 10331044. doi:10.1016/j.jinsphys.2011.05.001CrossRefGoogle ScholarPubMed
Jing, D-P, Guo, J-F, Jiang, -Y-Y, Zhao, J-Z, Sethi, A, He, K-L and Wang, Z-Y (2019) Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Science 27, 780790. doi:10.1111/1744-7917.12700CrossRefGoogle Scholar
Jing, T-X, Wu, Y-X, Li, T, Wei, -D-D, Smagghe, G and Wang, -J-J (2017) Identification and expression profiles of fifteen delta-class glutathione S-transferase genes from a stored-product pest, Liposcelis entomophila (Enderlein) (Psocoptera: Liposcelididae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 206, 3541. doi:10.1016/j.cbpb.2017.01.008CrossRefGoogle ScholarPubMed
Kergoat, GJ, Meseguer, AS and Jousselin, E (2017) Evolution of plant-insect interactions: Insights from macroevolutionary approaches in plants and herbivorous insects. Advances in Botanical Research 81, 2553. doi:10.1016/bs.abr.2016.09.005CrossRefGoogle Scholar
Kim, YH, Issa, MS, Cooper, AMW and Zhu, KY (2015) RNA interference: Applications and advances in insect toxicology and insect pest management. Pesticide Biochemistry and Physiology 120, 109117. doi:10.1016/j.pestbp.2015.01.002CrossRefGoogle ScholarPubMed
Koirala, BKS, Moural, T and Zhu, F (2022) Functional and structural diversity of insect glutathione S-transferases in xenobiotic adaptation. International Journal of Biological Sciences 18, 57135723. https://www.ijbs.com/v18p5713.htm 10.7150/ijbs.77141CrossRefGoogle Scholar
Liang, CT, Liu, XQ, Lv, JL, Zhao, FN and Yu, Q (2024) The impact of different phosphorus fertilizers varieties on yield under wheat–maize rotation conditions. Agronomy 14, 1317. doi:10.3390/agronomy14061317CrossRefGoogle Scholar
Lima, MS, Silva, PSL, Oliveira, OF, Silva, KMB and Freitas, FCL (2010) Corn yield response to weed and fall armyworm controls. Planta Daninha 28, 103111. doi:10.1590/S0100-83582010000100013CrossRefGoogle Scholar
Liu, S, Rao, X-J, Li, M-Y, Feng, M-F, He, M-Z and Li, S-G (2015) Glutathione S‐transferases in the adaptation to plant secondary metabolites in the Myzus persicae aphid. Archives of Insect Biochemistry and Physiology 90, 113. doi:10.1002/arch.21240CrossRefGoogle Scholar
Liu, S, Zhang, Y-X, Wang, W-L, Zhang, B-X and Li, S-G (2017) Identification and characterisation of seventeen glutathione S-transferase genes from the cabbage white butterfly Pieris rapae. Pesticide Biochemistry and Physiology 143, 102110. doi:10.1016/j.pestbp.2017.09.001CrossRefGoogle ScholarPubMed
Livak, KJ and Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402408. doi:10.1006/meth.2001.1262CrossRefGoogle Scholar
Love, MI, Huber, W and Anders, S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 121. doi:10.1186/s13059-014-0550-8CrossRefGoogle ScholarPubMed
Lu, X-P, Xu, L, Meng, L-W, Wang, -L-L, Niu, JZ and Wang, -J-J (2020) Divergent molecular evolution in glutathione S-transferase conferring malathion resistance in the oriental fruit fly, Bactrocera dorsalis (Hendel). Chemosphere 242, 125203. doi:10.1016/j.chemosphere.2019.125203CrossRefGoogle ScholarPubMed
Ma, J, Sun, L, Zhao, H, Wang, Z, Zou, L and Cao, C (2021) Functional identification and characterization of GST genes in the Asian gypsy moth in response to poplar secondary metabolites. Pesticide Biochemistry and Physiology 176, 104860. doi:10.1016/j.pestbp.2021.104860CrossRefGoogle ScholarPubMed
Moné, Y, Nhim, S, Gimenez, S, Legeai, F, Seninet, I, Parrinello, H, Nègre, N and d’Alençon, E (2018) Characterization and expression profiling of microRNAs in response to plant feeding in two host-plant strains of the lepidopteran pest Spodoptera frugiperda. BMC Genomics 19, 115. doi:10.1186/s12864-018-5119-6CrossRefGoogle ScholarPubMed
Moraes, T, da Silva, AF, Leite, NA, Karam, D and Mendes, SM (2020) Survival and development of fall armyworm (Lepidoptera: Noctuidae) in weeds during the off-season. Florida Entomologist 103, 288292. doi:10.1653/024.103.0221CrossRefGoogle Scholar
Paredes-Sánchez, FA, Rivera, G, Bocanegra-García, V, Martínez-Padrón, HY, Berrones-Morales, M, Niño-García, N and Herrera-Mayorga, V (2021) Advances in control strategies against Spodoptera frugiperda: A review. Molecules 26, 5587. doi:10.3390/molecules26185587CrossRefGoogle ScholarPubMed
Ponsankar, A, Sahayaraj, K, Senthil-Nathan, S, Vasantha-Srinivasan, P, Karthi, S, Thanigaivel, A, Petchidurai, G, Madasamy, M and Hunter, WB (2019) Toxicity and developmental effect of Cucurbitacin E from Citrullus colocynthis L. (Cucurbitales: Cucurbitaceae) against Spodoptera litura fab. and a non-target earthworm Eisenia fetida savigny. Environmental Science and Pollution Research 27, 2339023401. doi:10.1007/s11356-019-04438-1CrossRefGoogle Scholar
Ramya, N, Padala, VK, Sagar, D, Rupali, JS, Kumar, H, Reshma, R, Yadav, P and Subramanian, S (2024) Decoding the copulation and courtship patterns of an invasive pest, Spodoptera frugiperda (J. E. Smith, 1797) from India. Current Science 126, 1152. doi:10.18520/cs/v126/i9/1152-1158CrossRefGoogle Scholar
Ribeiro, LP, Klock, ALS, Nesi, CN, Luczkievicz, FRG, Travi, MRL and Rech, AF (2020) Adaptability and comparative biology of fall armyworm on maize and perennial forage species and relation with chemical-bromatological composition. Neotropical Entomology 49, 758767. doi:10.1007/s13744-020-00794-7CrossRefGoogle ScholarPubMed
Saha, D, Mukhopadhyay, A and Bahadur, M (2012) Effect of host plants on fitness traits and detoxifying enzymes activity of Helopeltis theivora, a major sucking insect pest of tea. Phytoparasitica 40, 433444. doi:10.1007/s12600-012-0244-2CrossRefGoogle Scholar
Silva-Brandão, KL, Horikoshi, RJ, Bernardi, D, Omoto, C, Figueira, A and Brandão, MM (2017) Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. BMC Genomics 18, 115. doi:10.1186/s12864-017-4170-zCrossRefGoogle ScholarPubMed
Simon, J-C, d’Alençon, E, Guy, E, Jacquin-Joly, E, Jaquiéry, J, Nouhaud, P, Peccoud, J, Sugio, A and Streiff, R (2015) Genomics of adaptation to host-plants in herbivorous insects. Briefings in Functional Genomics 14, 413423. doi:10.1093/bfgp/elv015CrossRefGoogle ScholarPubMed
Singh, S, Gupta, M, Pandher, S, Kaur, G, Goel, N, Rathore, P and Palli, SR (2019) RNA sequencing, selection of reference genes and demonstration of feeding RNAi in Thrips tabaci (Lind.) (Thysanoptera: Thripidae). BMC Molecular Biology 20, 121. doi:10.1186/s12867-019-0123-1CrossRefGoogle ScholarPubMed
Sotelo-Cardona, P, Chuang, W-P, Lin, M-Y, Chiang, M-Y and Ramasamy, S (2021) Oviposition preference not necessarily predicts offspring performance in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) on vegetable crops. Scientific Reports 11, 15885. doi:10.1038/s41598-021-95399-4CrossRefGoogle Scholar
Su, Q, Zhou, ZX, Zhang, JM, Shi, CH, Zhang, GH, Jin, ZY, Wang, WK and Li, CR (2018) Effect of plant secondary metabolites on common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Entomological Research 48, 1826. doi:10.1111/1748-5967.12238CrossRefGoogle Scholar
Tang, YL, Li, QY, Xiang, L, Gu, RC, Wu, YY, Zhang, YH, Bai, XR, Niu, XH, Li, T, Wei, JH, Pan, GQ and Zhou, ZY (2021) First report on Megaselia scalaris Loew (Diptera: Phoridae) infestation of the invasive pest Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in China. Insects 12, 65. doi:10.3390/insects12010065CrossRefGoogle ScholarPubMed
Ullah, F, Gul, H, Tariq, K, Hafeez, M, Desneux, N, Gao, XW and Song, DL (2022) RNA interference-mediated silencing of ecdysone receptor (EcR) gene causes lethal and sublethal effects on melon aphid, Aphis gossypii. Entomologia Generalis 42, 791797. doi:10.1127/entomologia/2022/1434CrossRefGoogle Scholar
Wang, R-L, Li, J, Staehelin, C, Xin, X-W and Su, Y-J (2015a) Expression analysis of two P450 monooxygenase genes of the tobacco cutworm moth (Spodoptera litura) at different developmental stages and in response to plant allelochemicals. Journal of Chemical Ecology 41, 111119. doi:10.1007/s10886-014-0540-zCrossRefGoogle Scholar
Wang, R-L, Staehelin, C, Xia, -Q-Q, Su, Y-J and Zeng, R-S (2015b) Identification and characterization of CYP9A40 from the tobacco cutworm moth (Spodoptera litura), a cytochrome P450 gene induced by plant allelochemicals and insecticides. International Journal Of Molecular Sciences 16, 2260622620. doi:10.3390/ijms160922606CrossRefGoogle Scholar
War, AR, Taggar, GK, Hussain, B, Taggar, MS, Nair, RM and Sharma, HC (2018) Plant defence against herbivory and insect adaptations. AoB Plants 10, ply037. doi:10.1093/aobpla/ply037Google Scholar
Wu, M-L, Zhao, H-Y, Liu, T-X and Pan, M-Z (2023) Assessing the suitability of Chinese cabbage as an alternative host for Spodoptera frugiperda (Lepidoptera: Noctuidae). Environmental Entomology 52, 7480. doi:10.1093/ee/nvac098CrossRefGoogle Scholar
Yactayo-Chang, JP, Tang, HV, Mendoza, J, Christensen, SA and Block, AK (2020) Plant defense chemicals against insect pests. Agronomy 10, 1156. doi:10.3390/agronomy10081156CrossRefGoogle Scholar
Yang, J, Sun, X-Q, Yan, S-Y, Pan, W-J, Zhang, M-X and Cai, Q-N (2017) Interaction of ferulic acid with glutathione S-transferase and carboxylesterase genes in the brown planthopper, Nilaparvata lugens. Journal Of Chemical Ecology 43, 693702. doi:10.1007/s10886-017-0859-3CrossRefGoogle ScholarPubMed
Zalucki, MP, Clarke, AR and Malcolm, SB (2002) Ecology and behavior of first instar larval Lepidoptera. Annual Review of Entomology 47, 361393. doi:10.1146/annurev.ento.47.091201.145220CrossRefGoogle ScholarPubMed
Zhang, GJ, Meng, LQ, Chen, R, Wang, W, Jing, XF, Zhu‐Salzman, K and Cheng, WN (2024) Characterization of three glutathione S-transferases potentially associated with adaptation of the wheat blossom midge Sitodiplosis mosellana to host plant defense. Pest Management Science 80, 885895. doi:10.1002/ps.7824CrossRefGoogle ScholarPubMed
Zhang, M, Fang, T, Pu, G, Sun, X, Zhou, X and Cai, Q (2013) Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Pesticide Biochemistry and Physiology 107, 4449. doi:10.1016/j.pestbp.2013.05.002CrossRefGoogle ScholarPubMed
Zhang, YL, Zhang, YT, Fu, MJ, Yin, GH, Sayre, RT, Pennerman, KK and Yang, FS (2018) RNA interference to control Asian corn borer using dsRNA from a novel glutathione-S-transferase gene of Ostrinia furnacalis (Lepidoptera: Crambidae). Journal of Insect Science 18, 16. doi:10.1093/jisesa/iey100CrossRefGoogle ScholarPubMed
Zhao, Y-X, Huang, J-M, Ni, H, Guo, D, Yang, F-X, Wang, X and Wu, S-F (2020) Susceptibility of fall armyworm, Spodoptera frugiperda (J.E. Smith), to eight insecticides in China, with special reference to lambda-cyhalothrin. Pesticide Biochemistry and Physiology 168, 104623. doi:10.1016/j.pestbp.2020.104623CrossRefGoogle Scholar
Zheng, RW, Yao, L, Peng, J, Chen, ZH, Yang, F, Chen, SX and Tang, QF (2022) Comparative transcriptome analysis reveals key candidate genes mediating ovarian development in Spodoptera frugiperda fed on two host plants. Frontiers in Physiology 13, 2383. doi:10.3389/fphys.2022.1056540CrossRefGoogle ScholarPubMed
Zhu, YC, Blanco, CA, Portilla, M, Adamczyk, J, Luttrell, R and Huang, FN (2015) Evidence of multiple/cross resistance to Bt and organophosphate insecticides in Puerto Rico population of the fall armyworm, Spodoptera frugiperda. Pesticide Biochemistry and Physiology 122, 1521. doi:10.1016/j.pestbp.2015.01.007CrossRefGoogle ScholarPubMed
Zhu-Salzman, K and Zeng, R (2015) Insect response to plant defensive protease inhibitors. Annual Review of Entomology 60, 233252. doi:10.1146/annurev-ento-010814-020816CrossRefGoogle ScholarPubMed
Zou, XP, Xu, ZB, Zou, HW, Liu, JS, Chen, SN and Feng, QL (2016) Glutathione S-transferase SlGSTE1 in Spodoptera litura may be associated with feeding adaptation of host plants. Insect Biochemistry And Molecular Biology 70, 3243. doi:10.1016/j.ibmb.2015.10.005CrossRefGoogle ScholarPubMed