Hostname: page-component-54dcc4c588-9xpg2 Total loading time: 0 Render date: 2025-09-11T21:40:04.906Z Has data issue: false hasContentIssue false

Trait-based explanation of circadian flight rhythms in bark and ambrosia beetles (Scolytinae)

Published online by Cambridge University Press:  25 August 2025

Dominik Stočes
Affiliation:
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
Jan Šipoš
Affiliation:
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
Attila Balázs*
Affiliation:
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
Jiří Procházka
Affiliation:
Department of Entomology, Moravské zemské muzeum, Brno, Czech Republic Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
David Kopr
Affiliation:
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
Petr Baňař
Affiliation:
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of AgriSciences, Mendel University in Brno, Czech Republic
*
Corresponding author: Attila Balázs; Email: balazsaeko@gmail.com

Abstract

Understanding the circadian rhythms of bark and ambrosia beetles (Scolytinae) is crucial for assessing their dispersal strategies, trophic specialisation, and microhabitat preferences. This study investigated circadian rhythms in Scolytinae communities using flight interception traps in an oak forest in the southern part of Czechia. Ordination biplot revealed a flight activity gradient, with nocturnal dispersers distinct from diurnal species. Species richness gradually decreased from the 20:00–24:00 interval through to the 12:00–16:00 interval, with the most notable decline observed between the 08:00–12:00 and 12:00–16:00 intervals. A combination of fourth-corner and partial canonical correspondence analyses identified tribal affiliation, trophic specialisation, and microhabitat preference as key drivers of flight structuring. Members of the tribe Xyleborini showed negative association to the 16:00–20:00 interval. Xylomycetophagous species, such as Xyleborinus saxesenii exhibited multimodal activity peaks, with increased flight from nighttime to early morning. In contrast, species that feed in the phloem such as Scolytus intricatus showed no significant association with any specific time interval. Several species that utilise stumps as potential breeding substrates showed significantly reduced flight activity during the crepuscular period, which supports the hypothesis that microhabitat preference contributes to diel periodicity. Our findings show the complex interplay between abiotic and biotic factors in shaping circadian flight periodicity, which leads to distinct flight activity patterns between Scolytini bark and Xyleborini ambrosia beetles. These results emphasise the ecological significance of maintaining heterogeneous forest structures that provide a balance of shaded and sun-exposed deadwood habitats to support diverse assemblages.

Information

Type
Research Paper
Copyright
© The Author(s), 2025. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Asgari Targhi, A and Klerman, E (2018) Mathematical modeling of circadian rhythms. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 11. doi:10.1002/wsbm.1439Google ScholarPubMed
Ayres, M and Lombardero, M (2018) Forest pests and their management in the Anthropocene. Canadian Journal of Forest Research 48, 292301. doi:10.1139/CJFR-2017-0033CrossRefGoogle Scholar
Balázs, A, Bezděk, J and Šipoš, J (2024) Beetle assemblage distribution along edge–forest gradient in a managed oak forest. Agricultural and Forest Entomology 26, 496507. doi:10.1111/afe.12640CrossRefGoogle Scholar
Beaver, RA (1989) Insect–fungus relationships in the bark and ambrosia beetles. In Wilding, N, Collins, NM, Hammond, PM and Webber, JF (eds.), Insect-fungus Interactions. London: Academic Press, 141205.Google Scholar
Benita, M, Menahem, A, Rath, A, Scharf, I and Gottlieb, D (2024) Beyond adult models: Tribolium castaneum larval timekeeping reveals unexpected robustness and insights into circadian clock. Insect Science. doi:10.1111/1744-7917.13437Google ScholarPubMed
Benjamini, Y and Hochberg, Y (1995) Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological) 57(1), 289300. doi:10.1111/j.2517-6161.1995.tb02031.xCrossRefGoogle Scholar
Bloch, G, Hazan, E and Rafaeli, A (2013) Circadian rhythms and endocrine functions in adult insects. Journal of Insect Physiology 59(1), 5669. doi:10.1016/j.jinsphys.2012.10.012CrossRefGoogle ScholarPubMed
Brar, GS, Capinera, JL, McLean, S, Kendra, PE, Ploetz, RC and Peña, JE (2012) Effect of trap size, trap height, and lure age on sampling Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), and its flight periodicity and seasonality. Florida Entomologist 95, 10031011. doi:10.1653/024.095.0428CrossRefGoogle Scholar
Brin, A, Bouget, C, Valladares, L and Brustel, H (2012) Are stumps important for the conservation of saproxylic beetles in managed forests? Insights from a comparison of assemblages on logs and stumps in oak-dominated forests and pine plantations. Insect Conservation and Diversity 5(6), 111. doi:10.1111/j.1752-4598.2012.00209.xGoogle Scholar
Burakowski, B, Mroczkowski, M, and Stefańska, J (1992) Chrząszcze (Coleoptera). Ryjkowcowate Prócz Ryjkowców – Curculionioidea Prócz Curculionidae. Katalog Fauny Polski, XXIII, 18, Warszawa: Polska Akademia Nauk. [in Polish].Google Scholar
Byers, JA, Anderbrant, O and Löqvist, J (1989) Effective attraction radius: A method for comparing species attractants and determining densities of flying insects. Journal of Chemical Ecology 15, 749765. doi:10.1007/BF01014716CrossRefGoogle ScholarPubMed
Chen, Y, Aukema, BH and Seybold, SJ (2020) The effects of weather on the flight of an invasive bark beetle, Pityophthorus juglandis. Insects 11(3), Article 156. doi:10.3390/insects11030156CrossRefGoogle Scholar
Chu, X, Yang, M, Li, G, Liu, J, Liang, G, Wu, S, Wang, R, Zhang, F and Hu, X (2021) Diversity and distribution of xylophagous beetles from Pinus thunbergii and Pinus massoniana infected by pine wood nematode. Forests 12(11), Article 1549. doi:10.3390/f12111549CrossRefGoogle Scholar
Conti, L, Schmidt Kloiber, A, Grenouillet, G, et al. (2014) A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721, 297315. doi:10.1007/s10750-013-1690-7.CrossRefGoogle Scholar
Dell, I and Davis, T (2019) Effects of site thermal variation and physiography on flight synchrony and phenology of the North American spruce beetle (Coleoptera: Curculionidae, Scolytinae) and associated species in Colorado. Environmental Entomology 48, 9981011. doi:10.1093/ee/nvz067CrossRefGoogle ScholarPubMed
Doledec, S, Chessel, D, Ter Braak, CJF and Champely, S (1996) Matching species traits to environmental variables: A new three-table ordination method. Environmental and Ecological Statistics 3, 143166. doi:10.1007/BF02427859CrossRefGoogle Scholar
Dray, S (2013) A tutorial to perform fourth-corner and RLQ analyses in R. Supplement 1. Retrieved from: https://s3-eu-west-1.amazonaws.com/pstorage-wiley856416/5628774/suppl1.pdf (accessed 15 February 2025).Google Scholar
Faccoli, M, Blaženec, M and Schlyter, F (2005) Feeding response to host and nonhost compounds by Ips typographus in a tunneling microassay. Journal of Chemical Ecology 31, 745759. doi:10.1007/s10886-005-3542-zCrossRefGoogle Scholar
Fettig, CJ, Shea, PJ and Borys, RR (2004) Seasonal flight patterns of four bark beetle species (Coleoptera: Scolytidae) along a latitudinal gradient in California. Pan-Pacific Entomologist 80, 417.Google Scholar
Fiala, T, Holuša, J, Procházka, J, Čížek, L, Dzurenko, M, Foit, J, Galko, J, Kašák, J, Kulfan, J, Lakatos, F, Nakládal, O, Schlaghamerský, J, Svatoš, M, Trombik, J, Zábranský, P, Zach, P and Kula, E (2020) Xylosandrus germanus in Central Europe: Spread into and within the Czech Republic. Journal of Applied Entomology 144(5), 423433. doi:10.1111/jen.12759CrossRefGoogle Scholar
Fraedrich, SW, Harrington, TC, Rabaglia, RJ, Ulyshen, MD, Mayfield, AEIII, Hanula, JL, Eickwort, JM and Miller, DR (2008) A fungal symbiont of the redbay ambrosia beetle causes laurel wilt. Plant Disease 92(2), 215224. doi:10.1094/PDIS-92-2-0215CrossRefGoogle ScholarPubMed
Führer, E and Chen, ZY (1979) Zum Einfluss von Photoperiode und Temperatur auf die Entwicklung des Kupferstechers, Pityogenes chalcographus L. Forstwissenschaftliches Centralblatt 98, 8791. doi:10.1007/BF02743103CrossRefGoogle Scholar
Garnier, E, Navas, M-L, and Grigulis, K (2016) Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties. Oxford: Oxford University Press.Google Scholar
Giebultowicz, JM (2000) Molecular mechanism and cellular distribution of insect circadian clocks. Annual Review of Entomology 45, 769793. doi:10.1146/annurev.ento.45.1.769CrossRefGoogle ScholarPubMed
Goheen, DJ and Hansen, EM (1993) Effects of pathogens and bark beetles on forests. In Schowalter, TD and Filip, GM (eds.), Beetle Pathogen Interactions in Conifer Forests. London: Academic Press, 175196.Google Scholar
Gray, B, Billings, RF, Gara, RI and Johnsey, RL (1972) On the emergence and initial flight behaviour of the mountain pine beetle, dendroctonus ponderosae, in Eastern Washington. Zeitschrift Für Angewandte Entomologie 71, 250259. doi:10.1111/j.1439-0418.1972.tb01745.xCrossRefGoogle Scholar
Gray, B, Billings, R, Gara, R and Johnsey, R (2009) On the emergence and initial flight behaviour of the mountain pine beetle in eastern Washington. Journal of Applied Entomology 71, 250259. doi:10.1111/J.1439-0418.1972.TB01745.XGoogle Scholar
Gregoire, J-C and Evans, HF (2004) Damage and control of BAWBILT organisms, an overview. In Lieutier, F, Day, KR, Battisti, A, Grégoire, J-C and Evans, HF (eds.), Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1937. Chapter 4CrossRefGoogle Scholar
Holuša, J, Fiala, T and Foit, J (2021) Ambrosia beetles prefer closed canopies in oak forests of Central Europe. Forests 12, 1223. doi:10.3390/f12091223CrossRefGoogle Scholar
Illarionova, S, Tregubova, P, Shukhratov, I, Shadrin, D, Kedrov, A and Burnaev, E (2024) Remote sensing data fusion approach for estimating forest degradation: A case study of boreal forests damaged by Polygraphus proximus. Frontiers in Environmental Science. doi:10.3389/fenvs.2024.1412870CrossRefGoogle Scholar
Johnson, AJ, Kendra, PE, Skelton, J and Hulcr, J (2016) Species diversity, phenology, and temporal flight patterns of Hypothenemus pygmy borers (Coleoptera: Curculionidae: Scolytinae) in South Florida. Environmental Entomology 45, 627632. doi:10.1093/ee/nvw039CrossRefGoogle ScholarPubMed
Jones, KL, Shegelski, VA, Marculis, NG, Wijerathna, AN and Evenden, ML (2019) Factors influencing dispersal by flight in bark beetles (Coleoptera: Curculionidae: Scolytinae): From genes to landscapes. Canadian Journal of Forest Research 49(9), 10241041. doi:10.1139/cjfr-2018-0304CrossRefGoogle Scholar
Jordal, B (2006) Community structure and reproductive biology of bark beetles (Coleoptera: Scolytinae) associated with Macaronesian Euphorbia shrubs. European Journal of Endocrinology 103, 7180. doi:10.14411/EJE.2006.012Google Scholar
Kautz, M, Schopf, R and Ohser, J (2013) The “sun-effect”: Microclimatic alterations predispose forest edges to bark beetle infestations. European Journal of Forest Research 132(3), 453465. doi:10.1007/s10342-013-0685-2CrossRefGoogle Scholar
Kelsey, R, Gallego, D, Sánchez-García, F and Pajares, J (2014) Ethanol accumulation during severe drought may signal tree vulnerability to detection and attack by bark beetles. Canadian Journal of Forest Research 44, 554561. doi:10.1139/CJFR-2013-0428CrossRefGoogle Scholar
Kendra, PE, Montgomery, WS, Niogret, J, Deyrup, MA, Guillén, L and Epsky, ND (2012) Xyleborus glabratus, X. affinis, and X. ferrugineus (Coleoptera: Curculionidae: Scolytinae): Electroantennogram responses to host-based attractants and temporal patterns in host-seeking flight. Environmental Entomology 41, 15971605. doi:10.1603/EN12164CrossRefGoogle Scholar
Kirisits, T (2004) Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In (Lieutier, F, Day, KR, Battisti, A, Grégoire, J-C and Evans, HF). (eds.) Bark and Wood Boring Insects in Living Trees in Europe: A Synthesis. Dordrecht: Springer, 181235. doi:10.1007/978-1-4020-2241-8Google Scholar
Kirkendall, LR, Biedermann, PHW, and Jordal, BH (2015) Evolution and diversity of bark and ambrosia beetles. In (Vega, FE, and Hofstetter, RW). (eds.) Bark Beetles: Biology and Ecology of Native and Invasive Species. London: Academic Press, 85156. doi:10.1016/B978-0-12-417156-5.00003-4CrossRefGoogle Scholar
Lamarre, GP, Molto, Q, Fine, PV and Baraloto, C (2012) A comparison of two common flight interception traps to survey tropical arthropods. ZooKeys 216, 4355. doi:10.3897/zookeys.216.3332CrossRefGoogle Scholar
Lewis, T and Taylor, LR (1965) Diurnal periodicity of flight by insects. Transactions of the Royal Entomological Society of London 116, 393479.CrossRefGoogle Scholar
Lieutier, F, Day, KR, Battisti, A, Grégoire, J-C, and Evans, HF (2004) Bark and Wood Boring Insects in Living Trees in Europe: A Synthesis. Dordrecht: Springer.CrossRefGoogle Scholar
Lobinger, G (1994) Die Lufttemperatur als limitierender Faktor für die Schwärmaktivität zweier rindenbrütender Fichtenborkenkäferarten, Ips typographus L. und Pityogenes chalcographus L. Journal of Pest Science 67, 1417. doi:10.1007/BF01906563Google Scholar
Luo, Y, Huang, H and Roques, A (2022) Early monitoring of forest wood-boring pests with remote sensing. Annual Review of Entomology. doi:10.1146/annurev-ento-120220-125410Google ScholarPubMed
Majdák, A, Jakuš, R and Blaženec, M (2021) Determination of differences in temperature regimes on healthy and bark-beetle colonised spruce trees using a handheld thermal camera. iForest 14, 203211. doi:10.3832/ifor3531-014CrossRefGoogle Scholar
Mendel, Z, Boneh, O, Shenhar, Y, et al. (1991) Diurnal flight patterns of Orthotomicus erosus and Pityogenes calcaratus in Israel. Phytoparasitica 19, 2331. doi:10.1007/BF02981008.CrossRefGoogle Scholar
Menocal, O, Cruz, LF, Kendra, PE, Crane, JH, Ploetz, RC and Carrillo, D (2018) Vertical distribution and daily flight periodicity of ambrosia beetles (Coleoptera: Curculionidae) in Florida avocado orchards affected by laurel wilt. Journal of Economic Entomology 111(3), 11901196. doi:10.1093/jee/toy044CrossRefGoogle ScholarPubMed
Menocal, O, Kendra, PE, Padilla, A, Chagas, PC, Chagas, EA, Crane, JH and Carrillo, D (2022) Influence of canopy cover and meteorological factors on the abundance of bark and ambrosia beetles in avocado orchards affected by laurel wilt. Agronomy 12(3), 547. doi:10.3390/agronomy12030547CrossRefGoogle Scholar
Mezei, P, Fleischer, P, Rozkošný, J, Kurjak, D, Dzurenko, M, et al. (2022) Weather conditions and host characteristics drive infestations of sessile oak trap trees by oak bark beetles (Scolytus intricatus). Forest Ecology and Management 503, 119775. doi:10.1016/j.foreco.2021.119775.CrossRefGoogle Scholar
Monterrosa, A, Joseph, S, Blaauw, B, Hudson, W and Acebes-Doria, A (2022) Ambrosia beetle occurrence and phenology of Xylosandrus spp. in ornamental nurseries, tree fruit, and pecan orchards in Georgia. Environmental Entomology 51, 9981009. doi:10.1093/ee/nvac064CrossRefGoogle ScholarPubMed
Mouchet, MA, Villéger, S, Mason, NW and Mouillot, D (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology 24(4), 867876. doi:10.1111/j.1365-2435.2010.01695.xCrossRefGoogle Scholar
Percel, G, Laroche, F and Bouget, C (2019) The scale of saproxylic beetles response to landscape structure depends on their habitat stability. Landscape Ecology 34, 19051918. doi:10.1007/s10980-019-00857-0CrossRefGoogle Scholar
Pfeffer, A (1955) Fauna ČSR Bark Beetles Scolytinae, Part 6. Academia. Prague: Academia, 324.Google Scholar
Polizzi, G, Vitale, A, Garzia, G, Aiello, D, Biondi, A, Gugliuzzo, A and Criscione, G (2020) Seasonal changes in population structure of the ambrosia beetle Xylosandrus compactus and its associated fungi in a southern Mediterranean environment. PLoS One 15. doi:10.1371/journal.pone.0239011Google Scholar
Ranger, CM, Reding, ME, Persad, AB and Herms, DA (2010) Ability of stress-related volatiles to attract and induce attacks by Xylosandrus germanus and other ambrosia beetles. Agricultural and Forest Entomology 12, 177185. doi:10.1111/j.1461-9563.2009.00469.xCrossRefGoogle Scholar
Ranger, CM, Reding, ME, Schultz, PB, Oliver, JB, Frank, SD, Addesso, KM, Chong, JH, Sampson, B, Werle, C, Gill, S and Krause, C (2016) Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. Journal of Integrated Pest Management 7(1), 9. doi:10.1093/jipm/pmw005CrossRefGoogle Scholar
Ranger, C, Reding, M, Schultz, P and Oliver, J (2012) Ambrosia Beetle (Coleoptera: Curculionidae) Responses to Volatile Emissions Associated with Ethanol-Injected Magnolia virginiana. Environmental Entomology 41, 636647. doi:10.1603/EN11299CrossRefGoogle ScholarPubMed
R Core Team (2020) R: A Language and Environment for Statistical Computing. Vienna: R foundation for statistical computing.Google Scholar
Reding, M, Ranger, CM, Oliver, JB and Schultz, PB (2013) Monitoring attack and flight activity of Xylosandrus spp. (Coleoptera: Curculionidae: Scolytinae): The influence of temperature on activity. Journal of Economic Entomology 106, 17801787. doi:10.1603/EC13134CrossRefGoogle ScholarPubMed
Reshma, R, Prüser, T, Schulz, N, Mayer, P, Ogueta, M, Stanewsky, R and Kurtz, J (2024) Deciphering a beetle clock: Individual and sex-dependent variation in daily activity patterns. Journal of Biological Rhythms 39(5), 484501. doi:10.1177/07487304241263619Google Scholar
Resnerová, K, Šenfeldová, S, Horák, J, Popelková, D and Holuša, J (2023) Colonization of oak stumps by the oak pinhole borer in temperate forests and the efficacy of pheromone traps: Implications for pest management. Frontiers in Forests and Global Change 6, Article1132537. doi:10.3389/ffgc.2023.1132537CrossRefGoogle Scholar
Roling, MP and Kearby, WH (1975) Seasonal flight and vertical distribution of Scolytidae attracted to ethanol in an oak-hickory forest in Missouri. The Canadian Entomologist 107(12), 13151320. doi:10.4039/Ent1071315-12CrossRefGoogle Scholar
Russo, L, Stehouwer, R, Heberling, JM and Shea, K (2011) The composite insect trap: An innovative combination trap for biologically diverse sampling. PLoS One 6(6), e21079. doi:10.1371/journal.pone.0021079CrossRefGoogle ScholarPubMed
Salmane, R, Ciematnieks, L, Ozoliņa Pole, B, Ralle, G and Ievinsh, G (2015) Investigation of European shot-hole borer, Xyleborus dispar (Coleoptera, Scolytidae), in apple orchards of Latvia. ETR 2, 256260. doi:10.17770/etr2015vol2.279CrossRefGoogle Scholar
Saunders, DS (2009) Circadian rhythms and the evolution of photoperiodic timing in insects. Physiological Entomology 34, 301308. doi:10.1111/j.1365-3032.2009.00699.xCrossRefGoogle Scholar
Saunders, DS, Steel, CGH, Vafopoulou, X, and Lewis, RD (2002) Insect Clocks. 3rd edn. Londond: Elsevier.Google Scholar
Saunders, JL and Knoke, JK (1968) Circadian emergence rhythm of a tropical scolytid, Xyleborus ferrugineus. Annals of the Entomological Society of America 61, 587590. doi:10.1093/aesa/61.3.587CrossRefGoogle Scholar
Sauvard, D (2004) General biology of bark beetles. In Lieutier, F, Day, KR, Battisti, A, Grégoire, J-C and Evans, HF (eds.), Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Dordrecht, The Netherlands: Kluwer Academic Publishers, 6388. Chapter 7CrossRefGoogle Scholar
Schiebe, C, Unelius, C, Ganji, S, Binyameen, M, Birgersson, G and Schlyter, F (2019) Styrene, (+)-trans-(1R,4S,5S)-4-Thujanol and Oxygenated Monoterpenes Related to Host Stress Elicit Strong Electrophysiological Responses in the Bark Beetle Ips typographus. Journal of Chemical Ecology 45, 474489. doi:10.1007/s10886-019-01070-8CrossRefGoogle ScholarPubMed
Seo, M, Martini, X, Rivera, MJ and Stelinski, LL (2017) Flight capacities and diurnal flight patterns of the ambrosia beetles, Xyleborus glabratus and Monarthrum Mali (Coleoptera: Curculionidae). Environmental Entomology 46(3), 729734. doi:10.1093/ee/nvx085CrossRefGoogle ScholarPubMed
Siegert, C, Clay, N, Pace, K, Vissa, S, Hofstetter, R, Leverón, O and Riggins, J (2024) Bark beetle-driven community and biogeochemical impacts in forest ecosystems: A review. Annals of the Entomological Society of America 117, 163183. doi:10.1093/aesa/saae009CrossRefGoogle Scholar
Sittichaya, W, Permkam, S and Cognato, AI (2012) Species composition and flight pattern of Xyleborini ambrosia beetles (Col.: Curculionidae: Scolytinae) from agricultural areas in southern Thailand. Environmental Entomology 41(4), 776784. doi:10.1603/EN11271CrossRefGoogle Scholar
Skelton, J, Jusino, M, Carlson, P, Smith, K, Banik, M, Lindner, D, Palmer, J and Hulcr, J (2019) Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass. Molecular Ecology 28, 49714986. doi:10.1111/mec.15263CrossRefGoogle ScholarPubMed
Stengl, M and Schneider, A (2024) Contribution of membrane-associated oscillators to biological timing at different timescales. Frontiers in Physiology 14. doi:10.3389/fphys.2023.1243455Google ScholarPubMed
Sterkenburg, E, Clemmensen, K, Lindahl, B and Dahlberg, A (2019) The significance of retention trees for survival of ectomycorrhizal fungi in clear-cut Scots pine forests. Journal of Applied Ecology. doi:10.1111/1365-2664.13363CrossRefGoogle Scholar
Szujecki, A (1987) Ecology of Forest Insects. Państwowe Wydawnictwo Naukowe, Warsawa, 601 pp. [in Polish]Google Scholar
Ter Braak, CJF (2017) Fourth-corner correlation is a score test statistic in a log-linear trait–environment model that is useful in permutation testing. Environmental and Ecological Statistics 24, 219242. doi:10.1007/s10651-017-0368-0CrossRefGoogle Scholar
Ter Braak, CJF, Peres-Neto, P and Dray, S (2018) A critical issue in model-based inference for studying trait-based community assembly and a solution. PeerJ 6, e4704. doi:10.7717/peerj.4704Google Scholar
Ter Braak, CJF and Šmilauer, P (2012) Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. Microcomputer Power: Ithaca.Google Scholar
Tsikas, A and Karanikola, P (2022) To conserve or to control? Endangered saproxylic beetles considered as forest pests. Forests 13, 1929. doi:10.3390/f13111929CrossRefGoogle Scholar
Vindstad, OPL, Birkemoe, T, Ims, RA and Sverdrup Thygeson, A (2020) Environmental conditions alter successional trajectories on an ephemeral resource: A field experiment with beetles in dead wood. Oecologia 194(1–2), 205219. doi:10.1007/s00442-020-04750-5CrossRefGoogle Scholar
Vodka, Š, Konvička, M and Čížek, L (2009) Habitat preferences of oak-feeding xylophagous beetles in a temperate woodland: Implications for forest history and management. Journal of Insect Conservation 13, 553562. doi:10.1007/s10841-008-9202-1CrossRefGoogle Scholar
Wermelinger, B and Seifert, M (1998) Analysis of the temperature-dependent development of the spruce bark beetle Ips typographus (L.) (Col., Scolytidae). Journal of Applied Entomology 122(4), 185191. doi:10.1111/j.1439-0418.1998.tb01482.xCrossRefGoogle Scholar
Wertman, DL and Bleiker, KP (2019) Shedding new light upon circadian emergence rhythmicity in the mountain pine beetle (Coleoptera: Curculionidae: Scolytinae). Canadian Entomologist 151, 273277. doi:10.4039/tce.2019.18CrossRefGoogle Scholar
Williams, K, McMillin, J, Degomez, T, Clancy, K and Miller, A (2008) Influence of elevation on bark beetle (Coleoptera: Curculionidae, Scolytinae) community structure and flight periodicity in Ponderosa Pine forests of Arizona. Journal of Economic Entomology 37, 94109. doi:10.1603/0046-225X(2008)37[94:IOEOBB]2.0.CO;2Google ScholarPubMed
Yazdanian, M, Kankaanpää, T, Itämies, J, Leinonen, R, Merckx, T, Pöyry, J, Sihvonen, P, Suuronen, A, Välimäki, P and Kivelä, SM (2023) Ecological and life-history traits predict temporal trends in biomass of boreal moths. Insect Conservation and Diversity 16(5), 600615. doi:10.1111/icad.12657CrossRefGoogle Scholar
Zang, C, Helm, R, Sparks, T and Menzel, A (2015) Forecasting bark beetle early flight activity with plant phenology. Climate Research 66, 161170. doi:10.3354/cr01346CrossRefGoogle Scholar
Supplementary material: File

Stočes et al. supplementary material

Stočes et al. supplementary material
Download Stočes et al. supplementary material(File)
File 108.7 KB