Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 12
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Bao-Fundora, Lourdes Ramirez-Romero, Ricardo Sánchez-Hernández, Carla V Sánchez-Martínez, José and Desneux, Nicolas 2016. Intraguild predation ofGeocoris punctipesonEretmocerus eremicusand its influence on the control of the whiteflyTrialeurodes vaporariorum. Pest Management Science, Vol. 72, Issue. 6, p. 1110.

    Gomez-Polo, Priscila Alomar, Oscar Castañé, Cristina Aznar-Fernández, Thaïs Lundgren, Jonathan G Piñol, Josep and Agustí, Nuria 2016. Understanding trophic interactions ofOriusspp. (Hemiptera: Anthocoridae) in lettuce crops by molecular methods. Pest Management Science, Vol. 72, Issue. 2, p. 272.

    González-Chang, Mauricio Wratten, Stephen D. Lefort, Marie-Caroline and Boyer, Stéphane 2016. Food webs and biological control: A review of molecular tools used to reveal trophic interactions in agricultural systems. Food Webs,

    Hagler, James R. and Blackmer, Felisa 2015. Evidence of intraguild predation on a key member of the cotton predator complex. Food Webs, Vol. 4, p. 8.

    Zhang, Yi-Bo Castañé, Cristina Gabarra, Rosa Albajes, Ramon and Wan, Fang-Hao 2015. Host selection by the autoparasitoidEncarsia pergandiellaon primary (Bemisia tabaci) and secondary (Eretmocerus mundus) hosts. Insect Science, Vol. 22, Issue. 6, p. 793.

    Greenstone, Matthew H. Payton, Mark E. Weber, Donald C. and Simmons, Alvin M. 2014. The detectability half-life in arthropod predator-prey research: what it is, why we need it, how to measure it, and how to use it. Molecular Ecology, Vol. 23, Issue. 15, p. 3799.

    Lundgren, Jonathan G. López-Lavalle, Luis Augusto Becerra Parsa, Soroush and Wyckhuys, Kris A. G. 2014. Molecular determination of the predator community of a cassava whitefly in Colombia: pest-specific primer development and field validation. Journal of Pest Science, Vol. 87, Issue. 1, p. 125.

    Moreno-Ripoll, R. Gabarra, R. Symondson, W. O. C. King, R. A. and Agustí, N. 2014. Do the interactions among natural enemies compromise the biological control of the whitefly Bemisia tabaci?. Journal of Pest Science, Vol. 87, Issue. 1, p. 133.

    Itou, Masao Watanabe, Masaya Watanabe, Eisuke and Miura, Kazuki 2013. Gut content analysis to study predatory efficacy ofNesidiocoris tenuis(Reuter) (Hemiptera: Miridae) by molecular methods. Entomological Science, Vol. 16, Issue. 2, p. 145.

    Jenkins, Cheryl Chapman, Toni A. Micallef, Jessica L. and Reynolds, Olivia L. 2012. Molecular Techniques for the Detection and Differentiation of Host and Parasitoid Species and the Implications for Fruit Fly Management. Insects, Vol. 3, Issue. 4, p. 763.

    Moreno-Ripoll, R. Agustí, N. Berruezo, R. and Gabarra, R. 2012. Conspecific and heterospecific interactions between two omnivorous predators on tomato. Biological Control, Vol. 62, Issue. 3, p. 189.

    Schoeller, Erich N. Husseneder, Claudia and Allison, Jeremy D. 2012. Molecular evidence of facultative intraguild predation by Monochamus titillator larvae (Coleoptera: Cerambycidae) on members of the southern pine beetle guild. Naturwissenschaften, Vol. 99, Issue. 11, p. 913.


Trophic relationships between predators, whiteflies and their parasitoids in tomato greenhouses: a molecular approach

  • R. Moreno-Ripoll (a1), R. Gabarra (a1), W.O.C. Symondson (a2), R.A. King (a2) and N. Agustí (a1)
  • DOI:
  • Published online: 07 February 2012

The whiteflies Bemisia tabaci Gennadius and Trialeurodes vaporariorum (Westwood) (Hemiptera: Aleyrodidae) are two of the main pests in tomato crops. Their biological control in Mediterranean IPM systems is based on the predators Macrolophus pygmaeus (Rambur) and Nesidiocoris tenuis Reuter (Hemiptera: Miridae), as well as on the parasitoids Eretmocerus mundus (Mercet) and Encarsia pergandiella Howard (Hymenoptera: Aphelinidae). These natural enemies may interact with each other and their joint use could interfere with the biological control of those whitefly pests. Analysis of predator-prey interactions under field conditions is therefore essential in order to optimize whitefly control. Species-specific polymerase chain reaction (PCR)-primers were designed to detect DNA fragments of these whiteflies and parasitoids within both predator species in tomato greenhouses. We demonstrated that both predators feed on both whitefly species, as well as on both parasitoids under greenhouse conditions. Prey molecular detection was possible where prey abundance was very low or even where predation was not observed under a microscope. Whitefly DNA detection was positively correlated with adult whitefly abundance in the crop. However, a significant relationship was not observed between parasitoid DNA detection and the abundance of parasitoid pupae, even though the predation rate on parasitoids was high. This unidirectional intraguild predation (predators on parasitoids) could potentially reduce their combined impact on their joint prey/host. Prey molecular detection provided improved detection of prey consumption in greenhouse crops, as well as the possibility to identify which prey species were consumed by each predator species present in the greenhouse, offering a blueprint with wider applicability to other food webs.

Corresponding author
*Author for correspondence Fax: (34) 93 7533954 E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

N. Agustí & R. Gabarra (2009b) Effect of adult age and insect density of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on progeny. Journal of Pest Science 82, 241246.

N. Agustí , S. Shayler , J.D. Harwood , I.P. Vaughan , K.D. Sunderland & W.O.C. Symondson (2003) Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection within predators using molecular markers. Molecular Ecology 12, 34673475.

N. Agustí , D. Bourguet , T. Spataro , M. Delos , N. Eychenne , L. Folcher & R. Arditi (2005) Detection, identification and geographical distribution of European corn borer larval parasitoids using molecular markers. Molecular Ecology 14, 32673274.

R. Albajes & O. Alomar (1999) Current and potential use of polyphagous predators. pp. 265275inR. Albajes , M.L. Gullino , J.C. van Lenteren & Y. Elad (Eds) Integrated Pest and Disease Management in Greenhouse Crops. Dordrecht, Netherlands, Kluwer Academic Publishers.

R. Albajes , M.J. Sarasúa , J. Avilla , J. Arnó & R. Gabarra (2003) Integrated pest management in the mediterranean region: the case of Catalonia, Spain. pp. 341355inK.M. Maredia , D. Dakouo & D. Mota-Sanchez (Eds) Integrated Pest Management in the Global Arena. Wallingford, UK, CABI Publishing.

J. Arnó , R. Albajes & R. Gabarra (2006) Within-plant distribution and sampling of single and mixed infestations of Bemisia tabaci and Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in winter tomato crops. Journal of Economic Entomology 99, 331340.

I. Barnadas , R. Gabarra & R. Albajes (1998) Predatory capacity of two mirid bugs preying on Bemisia tabaci. Entomologia Experimentalis et Applicata 86, 215219.

F.J. Calvo , K. Bolckmans & J.E. Belda (2009) Development of a biological control-based Integrated Pest Management metod for Bemisia tabaco for protected sweet pepper crops. Entomologia Experimentalis et Applicata 133, 918.

C. Castañé , O. Alomar , M. Goula & R. Gabarra (2004) Colonization of tomato greenhouses by the predatory mirid bugs Macrolophus caliginosus and Dicyphus tamaninii. Biological Control 30, 591597.

J.M. Chacón , D.A. Landis & G.E. Heimpel (2008) Potential for biotic interference of a classical biological control agent of the soybean aphid. Biological Control 46, 216225.

R. Gabarra & M. Besri (1999) Tomatoes. pp. 420434inR. Albajes , M.L. Gullino , J.C. van Lenteren & Y. Elad (Eds) Integrated Pest and Disease Management in Greenhouse Crops. Dordrecht, Netherlands, Kluwer Academic Publishers.

T.D. Gariepy , U. Kuhlmann , C. Gillott & M. Erlandson (2007) Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods. Journal of Applied Entomology 131, 225240.

G.L. Harper , R.A. King , C.S. Dodd , J.D. Harwood , D.M. Glen , M.W. Bruford & W.O.C. Symondson (2005) Rapid screening of invertebrate predators for multiple prey DNA targets. Molecular Ecology 14, 819827.

J.D. Harwood , N. Desneux , H.Y.S. Yoo , D.L. Rowley , M.H. Greenstone , J.J. Obrycki & R.J. O'Neil (2007) Tracking the role of alternative prey in soybean aphid predation by Orius insidiosus: a molecular approach. Molecular Ecology 16, 43904400.

K.A. Hoelmer , L.S. Osborne & R.K. Yokomi (1994) Interactions of the whitefly predator Delphastus pusillus (Coleoptera: Coccinellidae) with parasitized sweetpotato whitefly (Homoptera: Aleyrodidae). Environmental Entomology 23, 136139.

S.N. Jarman (2004) Amplicon: software for designing PCR primers on aligned DNA sequences. Bioinformatics 20, 16441645.

R.A. King , D.S. Read , M. Traugott & W.O.C. Symondson (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Molecular Ecology 17, 947963.

A.-K. Kuusk , & N. Agustí (2008) Group-specific primers for DNA-based detection of springtails (Hexapoda: Collembola) within predator gut contents. Molecular Ecology Resources 8, 678681.

A.-K. Kuusk , A. Cassel-Lundhagen , A. Kvarnheden & B. Ekbom (2008) Tracking aphid predation by lycosid spiders in spring-sown cereals using PCR-based gut-content analysis. Basic and Applied Ecology 9, 718725.

T.X. Liu & P.A. Stansly (1996) Oviposition, development, and survivorship of Encarsia pergandiella (Hymenoptera: Aphelinidae) in four instars of Bemisia argentifolii (Homoptera: Aleyrodidae). Annals of the Entomological Society of America 89, 96102.

J.I. Martinez-Cascales , J.L. Cenis , G. Cassis & J.A. Sanchez (2006) Species identity of Macrolophus melanotoma (Costa 1853) and Macrolophus pygmaeus (Rambur 1839) (Insecta: Heteroptera: Miridae) based on morphological and molecular data and bionomic implications. Insect Systematics & Evolution 37, 385404.

M. Montserrat , R. Albajes & C. Castañé (2000b) Functional response of four heteropteran predators preying on greenhouse whitefly (Homoptera: Aleyrodidae) and western flower thrips (Thysanoptera: Thripidae). Environmental Entomology 29, 10751082.

A. Moya , P. Guirao , D. Cifuentes , F. Beitia & J.L. Cenis (2001) Genetic diversity of Iberian populations of Bemisia tabaci (Hemiptera: Aleyrodidae) based on random amplified polymorphic DNA-polymerase chain reaction. Molecular Ecology 10, 891897.

J.A. Rosenheim , H.K. Kaya , L.E. Ehler , J.J. Marois & B.A. Jaffee (1995) Intraguild predation among biological-control agents: theory and evidence. Biological Control 5, 303335.

D. Sint , L. Raso , R. Kaufmann & M. Traugott (2011) Optimizing methods for PCR-based analysis of predation. Molecular Ecology Resources 11, 795801.

W.O.C. Symondson (2002) Molecular identification of prey in predator diets. Molecular Ecology 11, 627641.

M. Traugott & W.O.C. Symondson (2008) Molecular analysis of predation on parasitized hosts. Bulletin of Entomological Research 98, 223231.

M. van Baalen , V. Krivan , P.C.J. van Rijn & M.W. Sabelis (2001) Alternative food, switching predators, and the persistence of predator-prey systems. American Naturalist 157, 512524.

G.F. Zhang , Z.C. & F.H. Wan (2007) Detection of Bemisia tabaci remains in predator guts using a sequence-characterized amplified region marker. Entomologia Experimentalis et Applicata 123, 8190.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Entomological Research
  • ISSN: 0007-4853
  • EISSN: 1475-2670
  • URL: /core/journals/bulletin-of-entomological-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *