Skip to main content
    • Aa
    • Aa

The Impact of the Lambda Calculus in Logic and Computer Science

  • Henk Barendregt (a1)

One of the most important contributions of A. Church to logic is his invention of the lambda calculus. We present the genesis of this theory and its two major areas of application: the representation of computations and the resulting functional programming languages on the one hand and the representation of reasoning and the resulting systems of computer mathematics on the other hand.

Hide All
[1] AbramskyS., GabbayD. M., and MaibaumT. S. E. (editors), Handbook of logic in computer science, Volume 2: Background: Computational structures, Oxford University Press, 1992.
[2] AckermannW., Zum Hilbertschen Aufbau der reellen Zahlen, Mathematische Annalen, vol. 99 (1928), pp. 118133.
[3] AppelA. W., Compiling with continuations, Cambridge University Press, 1992.
[4] AspinallD. and CompagnoniA., Subtyping dependent types, Proceedings of the 11th annual symposium on logic in computer science (New Brunswick, New Jersey) (ClarkeE., editor), IEEE Computer Society Press, 07 1996, pp. 8697.
[5] BackusJ. W., Can programming be liberatedfrom the von Neuman style?, Comm. ACM, vol. 21 (1978), pp. 613641.
[6] BarendregtH. P., The lambda calculus: its syntax and semantics, revised ed., North-Holland, Amsterdam, 1984.
[7] BarendregtH. P., Theoretical pearls: Self-interpretation in lambda calculus, Journal of Functional Programming, vol. 1 (1991), no. 2, pp. 229233.
[8] BarendregtH. P., Lambda calculi with types, 1992, in [1], pp. 117309.
[9] BarendregtH. P., Discriminating coded lambda terms, From universal morphisms to megabytes: A Baayen space-odyssey (AptK. R., SchrijverA. A., and TemmeN. M., editors), CWI, Kruislaan 413, 1098 SJ Amsterdam, 1994, pp. 141151.
[10] BarendregtH. P., Enumerators of lambda terms are reducing constructively, Annals of Pure and Applied Logic, vol. 73 (1995), pp. 39.
[11] BarendregtH. P., The quest for correctness, Images of SMC research, Stichting Mathematisch Centrum, P.O. Box 94079, 1090 GB Amsterdam, 1996, pp. 3958.
[12] BarendregtH. P. and BarendsenE., Efficient computations in formal proofs, to appear, 1997.
[13] BarendregtH. P., BunderM., and DekkersW., Systems of illative combinatory logic complete for first order propositional and predicate calculus, Journal of Symbolic Logic, vol. 58 (1993), no. 3, pp. 89108.
[14] BarendsenE. and SmetsersJ. E. W., Conventional and uniqueness typing in graph rewrite systems (extended abstract), 1993, in [105], pp. 4151.
[15] BarendsenE. and SmetsersJ. E. W., Uniqueness typing for functional languages with graph rewriting semantics, to appear in Mathematical Structures in Computer Science, 1997.
[16] BeesonM. J., Foundations of constructive mathematics, Springer-Verlag, Berlin, 1980.
[17] van BenthemJ. F. A. K., Language in action: Categories, lambdas and dynamic logic, Studies in Logic and the Foundations of Mathematics, vol. 130, North-Holland, Amsterdam, 1991.
[18] JuttingL. S. van Benthem, Checking Landau's “Grundlagen” in the AUTOMATH system, Ph.D. thesis , Eindhoven University of Technology, 1977.
[19] BerarducciA. and BöhmC., A self-interpreter of lambda calculus having a normal form, Lecture Notes in Computer Science, vol. 702 (1993), pp. 8599.
[20] BezemM. and GrooteJ. F. (editors), Typed lambda calculi and applications, TLCA'93, Lecture Notes in Computer Science, vol. 664, Berlin and New York, Springer-Verlag, 1993.
[21] BöhmC., The CUCH as a formal and description language, Annual review in automatic programming (GoodmanRichard, editor), vol. 3, Pergamon Press, Oxford, 1963, pp. 179197.
[22] BöhmC. and BerarducciA., Automatic synthesis of typed λ-programs on term algebras, Theoretical Computer Science, vol. 39 (1985), pp. 135154.
[23] BöhmC. and GrossW., Introduction to the CUCH, Automata theory (CaianielloE. R., editor), Academic Press, New York, 1966, pp. 3565.
[24] BöhmC., PipernoA., and GuerriniS., Lambda-definition of function(al)s by normal forms, Esop'94 (Berlin) (SanellaD., editor), vol. 788, Springer-Verlag, 1994, pp. 135154.
[25] BraithwaiteR. B. (editor), F. P. Ramsay: The foundations of mathematics and other logical essays, Routledge & Kegan Paul, London, 1960.
[26] de BruijnN. G., The mathematical language AUTOMATH, its usage and some of its extensions, Symposium on automatic demonstration (Berlin and New York) (LaudetM., LacombeD., and SchuetzenbergerM., editors), Lecture Notes in Mathematics, vol. 125, Springer-Verlag, 1970, pp. 2961, also in [88], pp. 73–100.
[27] de BruijnN. G., Reflections on Automath, Eindhoven University of Technology, 1990, also in [88], pp. 201228.
[28] ChurchA., An unsolvable problem of elementary number theory, American Journal of Mathematics, vol. 58 (1936), pp. 354363.
[29] ChurchA., A formulation of the simple theory of types, Journal of Symbolic Logic, vol. 5 (1940), pp. 5668.
[30] ChurchA., The calculi of lambda conversion, Princeton University Press, 1941.
[31] ChurchA. and RosserJ. B., Some properties of conversion, Transactions of the American Mathematical Society, vol. 39 (1936), pp. 472482.
[32] ClingerW. and ReesJ. (editors), Revised report on the algorithmic language Scheme, vol. IV, LISP Pointers, no. 3, 1991.
[33] CoquandT. and HuetG., The calculus of constructions, Information and Computation, vol. 76 (1988), no. 2/3, pp. 95120.
[34] CousineauG., CurienP.-L., and MaunyM., The categorical abstract machine, Science of Computer Programming, vol. 8 (1987), no. 2, pp. 173202.
[35] CurienP.-L., Categorical combinators, sequential algorithms, and functional programming, Research Notes in Theoretical Computer Science, Pitman, London, 1986.
[36] CurryH. B., Grundlagen der kombinatorischen Logik, American Journal of Mathematics, vol. 52 (1930), pp. 509–536, 789834, in German.
[37] CurryH. B., Functionality in combinatory logic, Proceedings of the National Academy of Science of the USA, vol. 20 (1934), pp. 584590.
[38] CurryH. B., Modified basic functionality in combinatory logic, Dialectica, vol. 23 (1969), pp. 8392.
[39] DekkersW., BunderM., and BarendregtH. P., Completeness of the propositions-as-types interpretation of intuitionistic logic into illative combinatory logic, Journal of Symbolic Logic (1997), to appear.
[40] van EekelenM. C. J. D. and PlasmeijerM. J., Functional programming and parallel graph rewriting, Addison-Wesley, Reading, Massachusetts, 1993.
[41] ElbersH., Personal communication, 1996.
[42] Euclid, The elements, 325 B.C. English translation in [55], 1956.
[43] FefermanS., A language and axioms for explicit mathematics, Proof theory symposium (Berlin) (DillerJ. H. and MüllerG. H., editors), Lecture Notes in Mathematics, vol. 500, Springer-Verlag, 1975, pp. 87139.
[44] FefermanS., Definedness, Erkentniss, vol. 43 (1995), pp. 295320.
[45] GamutL. T. F., Logic, language and meaning, Chicago University Press, Chicago, 1992.
[46] GandyR. O., Church's Thesis and principles for mechanisms, The Kleene symposium, North-Holland Publishing Company, Amsterdam, 1980, pp. 123148.
[47] GentzenG., Investigations into logical deduction, in [111], 1969.
[48] GentzenG., Untersuchungen über das logische Schliessen, Mathematische Zeitschrift, vol. 39 (1935), pp. 176–210, 405431, also available in [111], pp 68–131.
[49] GirardJ.-Y., Interprétation fonctionelle et élimination des coupures de l'arithmétique d'ordre supérieur, Ph.D. thesis , Universite Paris VII, 1972.
[50] GirardJ.-Y., Linear logic: its syntax and semantics, Advances in linear logic ( GirardJ.-Y., LafontY., and RegnierL., editors), London Mathematical Society Lecture Note Series, Cambridge University Press, 1995, available by anonymous ftp from as /pub/girard/
[51] GirardJ-Y., LafontY. G. A., and TaylorP., Proofs and types, Cambridge Tracts in Theoretical Computer Science, vol. 7, Cambridge University Press, 1989.
[52] GordonA. D., Functional programming and Input/Output, Distinguished Dissertations in Computer Science, Cambridge University Press, 1994.
[53] GrueK., Map theory, Theoretical Computer Science (1992), pp. 1133.
[54] GunterC. A. and ScottD. S., Semantic domains, Handbook of theoretical computer science, vol. B, in [78], 1990, pp. 633674.
[55] HeathT. L., The thirteen books of Euclid's elements, Dover Publications, Inc., New York, 1956.
[56] van HeijenoortJ. (editor), From Frege to Gödel: A source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, Massachusetts, 1967.
[57] HendersonP., Functional programming: Application and implementation, Prentice-Hall, Englewood Cliffs, New Jersey, 1980.
[58] HilbertD. and AckermannW., Grundzüge der theoretischen logik, first ed., Die Grundlehren der Mathematischen Wissenschaften in Einzeldars tellungen, Band XXVII, Springer-Verlag, Berlin and New York, 1928.
[59] HindleyR., The principal type-scheme of an object in combinatory logic, Transactions of the American Mathematical Society, vol. 146 (1969), pp. 2960.
[60] HodgesA., The enigma of intelligence, Unwin paperbacks, London, 1983.
[61] HofmannM., A simple model for quotient types, Typed lambda calculi and applications (Berlin and New York), Lecture Notes in Computer Science, Springer-Verlag, 1977, pp. 216234.
[62] HudakP. et al., Report on the programming language Haskell: A non-strict, purely functional language (Version 1.2), ACM SIGPLAN Notices, vol. 27 (1992), no. 5, pp. Ri–Rx, R1R163.
[63] HughesR. J. M., The design and implementation of programming languages, Ph.D. thesis , University of Oxford, 1984.
[64] HughesR. J. M., Why functional programming matters, The Computer Journal, vol. 32 (1989), no. 2, pp. 98107.
[65] IversonK. E., A programming language, Wiley, New York, 1962.
[66] JohnssonT., Efficient compilation of lazy evaluation, SIGPLAN Notices, vol. 19 (1984), no. 6, pp. 5869.
[67] KleeneS. C., Lambda-definability and recursiveness, Duke Mathematical Journal, vol. 2 (1936), pp. 340353.
[68] KleeneS. C., Introduction to metamathematics, The University Series in Higher Mathematics, D. Van Nostrand Comp., New York, Toronto, 1952.
[69] KleeneS. C., Reminiscences of logicians, Algebra and logic (Fourteenth summer res. inst., Austral. Math. Soc., Monash Univ., Clayton, 1974) (CrossleyJ. N., editor), Lecture Notes in Mathematics, vol. 450, Springer-Verlag, Berlin and New York, 1975, pp. 162.
[70] KleeneS. C., Origins of recursive function theory, Annals of the History of Computing, vol. 3 (1981), no. 1, pp. 5267.
[71] KleeneS. C. and RosserJ. B., The inconsistency of certain formal logics, Annals of Mathematics, vol. 36 (1935), pp. 630636.
[72] KoymansC. P. J., Models of the lambda calculus, Information and Control, vol. 52 (1982), no. 3, pp. 306323.
[73] KreiselG., Church's thesis: A kind of reducibility axiom for constructive mathematics, in [86], pp. 121150.
[74] KreiselG., The formalist-positivist doctrine of mathematical precision in the light of experience, L'age de la Science, vol. 3 (1970), pp. 1746.
[75] KuperJ., An axiomatic theory for partial functions, Information and Computation (1993), pp. 104150.
[76] LandauE., Grundlagen der analysis, third ed., Chelsea Publishing Company, 1960.
[77] LandinP. J., The mechanical evaluation of expressions, The Computer Journal, vol. 6 (1964), no. 4, pp. 308320.
[78] van LeeuwenJ. (editor), Handbook of theoretical computer science, vol. A, B, North-Holland, MIT-Press, 1990.
[79] LeivantD., Reasoning about functional programs and complexity classes associated with type disciplines, 24th annual symposium on foundations of computer science, IEEE, 1983, pp. 460469.
[80] LuoZ. and PollackR., The LEGO proof development system: A user's manual, Technical Report ECS-LFCS-92-211, University of Edinburgh, 05 1992.
[81] Martin-LöfP., Intuitionistic type theory, Studies in Proof Theory, Bibliopolis, Napoli, 1984.
[82] MatijasevičYu.V., On recursive unsolvability of hilbert's tenth problem, Fourth international congress for logic, methodology and philosophy of science, Studies in Logic and the Foundations of Mathematics, vol. 74, North-Holland, Amsterdam, 1971, pp. 89110.
[83] McCarthyJ. et al., Lisp 1.5 programmer's manual, MIT Press, Cambridge, Massachusetts, 1962.
[84] MilnerR., A theory of type polymorphism in programming, Journal of Computer and System Sciences, vol. 17 (1978), pp. 348375.
[85] MogensenT.Æ., Theoretical pearls: Efficient self-interpretation in lambda calculus, Journal of Functional Programming, vol. 2 (1992), no. 3, pp. 345364.
[86] MyhillJ., VesleyR. E., and KinoA. (editors), Intuitionism and proof theory, Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1970.
[87] NadathurG. and MillerD., An overview of λProlog, Logic programming: Proceedings of the fifth international conference and symposium, Volume 1 (Cambridge, Massachusetts) (KowalskiRobert A. and BowenKenneth A., editors), MIT Press, 08 1988, pp. 810827.
[88] NederpeltR. P., GeuversJ. H., and de VrijerR. C. (editors), Selected papers on automath, Studies in Logic and the Foundations of Mathematics, vol. 133, North-Holland, Amsterdam, 1994.
[89] von NeumannJ., Eine axiomatisierung der mengenlehre, Journal für die Reine und Angewandte Mathematik, vol. 154 (1925), pp. 219240.
[90] OostdijkM., Proof by calculation, Master's thesis, 385 , Universitaire School voor Informatica, Catholic University Nijmegen, 1996.
[91] Paulin-MohringC., Inductive definitions in the system Coq; rules and properties, 1993, in [20], pp. 328–345.
[92] JonesS. L. Peyton and WadlerP., Imperative functional programming, Conference record ofthe twentieth annual ACM SIGPLAN-SIGACT symposium on principles of programming languages, Charleston, South Carolina, January 10-13, 1992, ACM Press, 1993, pp. 7184 (English).
[93] PlotkinG. D., Call-by-name, call-by-value and the λ-calculus, Theoretical Computer Science, vol. 1 (1975), pp. 125159.
[94] PoincaréH., La science et l'hypothèse, Flammarion, Paris, 1902.
[95] RamseyF. P., The foundations of mathematics, Proceedings of the London Mathematical Society, Series 2, vol. 25 (1925), pp. 338384, translated in [25].
[96] ReynoldsJ. C., Definitional interpreters for higher-order programming languages, Proceedings of 25th ACM national conference (Boston, Massachusetts), 1972, pp. 717740.
[97] ReynoldsJ. C., The discoveries of continuations, LISP and Symbolic Computation, vol. 6 (1993), no. 3/4, pp. 233247.
[98] RobinsonR. M., The theory of classes—a modification of von Neumann's system, Journal of Symbolic Logic, vol. 2 (1937), pp. 2936.
[99] RosserJ. B., Highlights of the history of lambda-calculus, ACM symposium on Lisp and functional programming (Pennysylvania), ACM Press, 08 1982, pp. 216225.
[100] RussellB. A. W. and WhiteheadA. N., Principia mathematica, vol. 1 and 2, Cambridge University Press, 19101913.
[101] SchwichtenbergH., Definierbare Funktionen im λ-Kalkül mit Typen, Archief für Mathematische Logik, vol. 25 (1976), pp. 113114.
[102] ScottD. S., Constructive validity, Symposium on automated demonstration (LacombeD., LaudetM. and SchuetzenbergerM., editors), Lecture Notes in Mathematics, vol. 125, Springer-Verlag, Berlin, 1970, pp. 237275.
[103] ScottD. S., Continuous lattices, Toposes, algebraic geometry, and logic (LawvereF. W., editor), Lecture Notes in Mathematics, vol. 274, Springer-Verlag, Berlin and New York, 1972, pp. 97136.
[104] SeveriP. and PollE., Pure type systems with definitions, Proceedings of LFCS'94 (Berlin and New York) (NerodeA. and MatijasevičYu.V., editors), Lecture Notes in Computer Science, vol. 813, LFCS'94, St. Petersburg, Springer-Verlag, 1994, pp. 316328.
[105] ShyamasundarR. K. (editor), Proceedings of the 13th conference on foundations of software technology and theoretical computer science, Lecture Notes in Computer Science, vol. 761, Berlin and New York, Bombay, India, Springer-Verlag, 1993.
[106] SkolemT., Begründung der elementaren Arithmetik durch die rekurrierende Denkweise ohne Anwendung scheinbarer Verënderlichen mit unendlichem Ausdehnungsbereich, Videnskapsselskapets skrifter, I. Matematisk-naturvidenskabelig klasse, vol. 6 (1923), English translation in [56], pp. 302333.
[107] SmythM. B. and PlotkinG. D., The category-theoretic solution of recursive domain equations, SIAM Journal on Computing, vol. 11 (1982), no. 4, pp. 761783.
[108] StatmanR., The typed lambda calculus is not elementary recursive, Theoretical Computer Science, vol. 9 (1979), pp. 7381.
[109] SteeleGuy L.Jr., Rabbit: A compiler for Scheme, Technical Report AI-TR-474, Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 05 1978.
[110] SteeleGuy L.Jr., Common Lisp: The language, Digital Press, 1984.
[111] SzaboM. E. (editor), The collected papers of Gerhard Gentzen, North-Holland, Amsterdam, 1969.
[112] TroelstraA. S. (editor), Metamathematical investigation of intuitionistic arithmetic and analysis, Lecture Notes in Mathematics, vol. 344, Springer-Verlag, Berlin and New York, 1973.
[113] TuringA. M., On computable numbers with an application to the Entscheidungsproblem, Proceeding of the London Mathematical Society. Second Series., vol. 42 (1936), pp. 230265.
[114] TuringA. M., Computability and lambda definability, Journal of Symbolic Logic, vol. 2 (1937), pp. 153163.
[115] TurnerD. A., The SASL language manual, 1976.
[116] TurnerD. A., A new implementation technique for applicative languages, Software—Practice andExperience, vol. 9 (1979), pp. 3149.
[117] TurnerD. A., The semantic elegance of functional languages, Proceedings of the ACM/MIT conference on functional languages and computer architecture, ACM Press, Pennsylvania, 1981, pp. 8592.
[118] TurnerD. A., Miranda—a non-strict functional language with polymorphic types, Functional programming languages and computer architectures (Berlin and New York) (JouannaudJ. P., editor), Lecture Notes in Computer Science, vol. 201, Springer-Verlag, 1985, pp. 116.
[119] WadsworttC., Semantics and pragmatics of the lambda-calculus, D. Phil thesis , University of Oxford, Programming Research Group, Oxford, U.K., 1971.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of Symbolic Logic
  • ISSN: 1079-8986
  • EISSN: 1943-5894
  • URL: /core/journals/bulletin-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 111 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th October 2017. This data will be updated every 24 hours.