No CrossRef data available.
Published online by Cambridge University Press: 20 June 2025
We prove the conjecture of Franceschini and Lorenzini [‘Fat points of  $\mathbb P^n$ whose support is contained in a linear proper subspace’, J. Pure and Appl. Algebra 160 (2001), 169–182] about the regularity index of fat points of
$\mathbb P^n$ whose support is contained in a linear proper subspace’, J. Pure and Appl. Algebra 160 (2001), 169–182] about the regularity index of fat points of  $\mathbb P^n$ whose support is contained in a linear proper subspace.
$\mathbb P^n$ whose support is contained in a linear proper subspace.
 $n+2$
 fat points of
$n+2$
 fat points of 
 ${P}^n$
’, Comm. Algebra 40 (2012), 395–403.10.1080/00927872.2010.529093CrossRefGoogle Scholar
${P}^n$
’, Comm. Algebra 40 (2012), 395–403.10.1080/00927872.2010.529093CrossRefGoogle Scholar ${\mathbb{P}}^n$
 whose support is contained in a linear proper subspace’, J. Pure Appl. Algebra 160 (2001), 169–182.10.1016/S0022-4049(00)00084-0CrossRefGoogle Scholar
${\mathbb{P}}^n$
 whose support is contained in a linear proper subspace’, J. Pure Appl. Algebra 160 (2001), 169–182.10.1016/S0022-4049(00)00084-0CrossRefGoogle Scholar ${\mathbb{P}}^3$
’, J. Pure Appl. Algebra 151 (2000), 197–214.10.1016/S0022-4049(99)00055-9CrossRefGoogle Scholar
${\mathbb{P}}^3$
’, J. Pure Appl. Algebra 151 (2000), 197–214.10.1016/S0022-4049(99)00055-9CrossRefGoogle Scholar $\left(r-1\right)$
-space,
$\left(r-1\right)$
-space, 
 $s\le r+3$
’, Comm. Algebra 45 (2017), 4123–4138.10.1080/00927872.2016.1222395CrossRefGoogle Scholar
$s\le r+3$
’, Comm. Algebra 45 (2017), 4123–4138.10.1080/00927872.2016.1222395CrossRefGoogle Scholar