No CrossRef data available.
Published online by Cambridge University Press: 14 December 2022
In this paper, we show that every pair of sufficiently large even integers can be represented as a pair of eight prime cubes and k powers of  $2$. In particular, we prove that
$2$. In particular, we prove that  $k=335$ is admissible, which improves the previous result.
$k=335$ is admissible, which improves the previous result.
This work is supported by the National Natural Science Foundation of China (Grant No. 12171286).
 $2$
’, Invent. Math. 29 (1975), 125–142.10.1007/BF01390190CrossRefGoogle Scholar
$2$
’, Invent. Math. 29 (1975), 125–142.10.1007/BF01390190CrossRefGoogle Scholar $2$
in a representation of large even integers (II)’, Sci. China Ser. A 41 (1998), 1255–1271.10.1007/BF02882266CrossRefGoogle Scholar
$2$
in a representation of large even integers (II)’, Sci. China Ser. A 41 (1998), 1255–1271.10.1007/BF02882266CrossRefGoogle Scholar $2$
’, J. Number Theory 133 (2013), 3339–3347.10.1016/j.jnt.2013.04.006CrossRefGoogle Scholar
$2$
’, J. Number Theory 133 (2013), 3339–3347.10.1016/j.jnt.2013.04.006CrossRefGoogle Scholar $2$
’, Acta Arith. 145 (2010), 171–192.10.4064/aa145-2-6CrossRefGoogle Scholar
$2$
’, Acta Arith. 145 (2010), 171–192.10.4064/aa145-2-6CrossRefGoogle Scholar $204$
 powers of
$204$
 powers of 
 $2$
’, Int. J. Number Theory 16 (2020), 1547–1555.10.1142/S1793042120500803CrossRefGoogle Scholar
$2$
’, Int. J. Number Theory 16 (2020), 1547–1555.10.1142/S1793042120500803CrossRefGoogle Scholar