Hostname: page-component-7dd5485656-gs9qr Total loading time: 0 Render date: 2025-10-30T11:35:38.320Z Has data issue: false hasContentIssue false

TRANSFORMATION FORMULA OF DWORK’S p-ADIC HYPERGEOMETRIC FUNCTION

Published online by Cambridge University Press:  30 October 2025

YUSUKE NEMOTO*
Affiliation:
Chiba University , Yayoicho 1-33, Inage 263-8522, Japan

Abstract

In this paper, we give a transformation formula of Dwork’s p-adic hypergeometric function between t and $t^{-1}$. As an appendix, we introduce a finite analogue of this transformation formula, which implies a special case of the transformation formula for Dwork’s p-adic hypergeometric function.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

This paper is a part of the outcome of research performed under Waseda University Grant for Special Research Projects (Project number: 2024C-280) and Kakenhi Applicants (Project number: 2024R-054).

References

Asakura, M., ‘Frobenius action on a hypergeometric curve and an algorithm for computing values of Dwork’s $p$ -adic hypergeometric functions’, in: Transcendence in Algebra, Combinatorics, Geometry and Number Theory, Springer Proceedings in Mathematics & Statistics, 373 (eds. Bostan, A. and Raschel, K.) (Springer, Cham, 2021), 145.Google Scholar
Asakura, M., ‘A generalization of the Ross symbols in higher K-groups and hypergeometric functions I’, Preprint, 2021, arXiv:2003.10652.Google Scholar
Asakura, M., ‘A generalization of the Ross symbols in higher K-groups and hypergeometric functions II’, Preprint, 2022, arXiv:2102.07946.Google Scholar
Asakura, M. and Otsubo, N., ‘On the adelic Gaussian hypergeometric function’, Preprint, 2024, arXiv:2408.08012.Google Scholar
Dwork, B., ‘ $p$ -adic cycles’, Publ. Math. Inst. Hautes Études Sci. 37 (1969), 27115.CrossRefGoogle Scholar
Fuselier, J., Long, L., Ramakrishna, R., Swisher, H. and Tu, F.-T., Hypergeometric Functions over Finite Fields, Memoirs of the American Mathematical Society, 280, no. 1382 (American Mathematical Society, Providence, RI, 2022).10.1090/memo/1382CrossRefGoogle Scholar
Greene, J., ‘Hypergeometric functions over finite fields’, Trans. Amer. Math. Soc. 301(1) (1987), 77101.CrossRefGoogle Scholar
Hartshorne, R., ‘On the De Rham cohomology of algebraic varieties’, Publ. Math. Inst. Hautes Études Sci. 45 (1975), 599.CrossRefGoogle Scholar
Katz, N. M., Exponential Sums and Differential Equations, Annals of Mathematics Studies, 124 (Princeton University Press, Princeton, NJ, 1990).CrossRefGoogle Scholar
Koblitz, N., ‘The number of points on certain families of hypersurfaces over finite fields’, Compos. Math. 48(1) (1983), 323.Google Scholar
Le Stum, B., Rigid Cohomology, Cambridge Tracts in Mathematics, 172 (Cambridge University Press, Cambridge, 2007).CrossRefGoogle Scholar
McCarthy, D., ‘Transformations of well-poised hypergeometric functions over finite fields’, Finite Fields Appl. 18(6) (2012), 11331147.CrossRefGoogle Scholar
Otsubo, N., ‘Hypergeometric functions over finite fields’, Ramanujan J. 63(1) (2024), 55104.CrossRefGoogle Scholar
Slater, L. J., Generalized Hypergeometric Functions (Cambridge University Press, Cambridge, 1966).Google Scholar
Wang, C. H., ‘On transformation formulas of $p$ -adic hypergeometric functions $\mathscr{F}_{a,\dots, a}^{\left(\sigma \right)}(t)$ and ${\widehat{\mathscr{F}}}_{a,\dots, a}^{\ \left(\sigma \right)}(t)$ ’, Preprint, 2021, arXiv:2104.14092.Google Scholar
Wang, C. H., ‘Congruence relations for $p$ -adic hypergeometric functions ${\widehat{\mathscr{F}}}_{a,\dots, a}^{\ \left(\sigma \right)}(t)$ and its transformation formula’, Manuscripta Math. 169(3–4) (2022), 565602.Google Scholar