Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We compare the definitions of analyticity of vector-valued functions and their connections with the topological tensor products of non-locally convex spaces.
[1]Aleksandrov, A.B., ‘Essays on non locally convex Hardy classes’, in Complex Analysis and Spectral Theory: Lecture Notes in Math864, Editors Havin, V.P. and Nikolskii, N.K. (Springer-Verlag, Berlin, Heidelberg, New York, 1981).CrossRefGoogle Scholar
[2]
[2]Bernal, A. and Cerdà, J., ‘On non locally convex tensor products’, (1989) (preprint).Google Scholar
[3]
[3]Coifman, R.R. and Rochberg, R., ‘Representation theorems for holomorfic and harmonic functions in Lp’, Astérisque77 (1980), 11–66.Google Scholar
[7]Gramsch, B. and Vogt, D., ‘Holomorphe funktionen mit Werten in nicht lokalkonvexen Vektorräumen’, J. Reine Angew. Math.243 (1970), 159–170.Google Scholar
[8]
[8]Kalton, N.J., ‘Analytic functions in non-locally convex spaces and applications’, Studia Math.83 (1986), 275–303.CrossRefGoogle Scholar
[9]
[9]Kalton, N.J., ‘Plurisubharmonic functions on quasi-Banach spaces’, Studia Math.84 (1986), 297–324.CrossRefGoogle Scholar
[10]
[10]Kalton, N.J., Peck, N.T. and Roberts, W., ‘An F-space sampler’, London Math. Soc. Lecture Note Ser.89. (Cambridge Univ. Press 1984).Google Scholar