Hostname: page-component-cb9f654ff-mnl9s Total loading time: 0 Render date: 2025-09-03T10:59:57.827Z Has data issue: false hasContentIssue false

DIVISIBILITY AMONG POWER GCD MATRICES AND POWER LCM MATRICES

Published online by Cambridge University Press:  01 September 2025

SHAOFANG HONG*
Affiliation:
https://ror.org/011ashp19 Mathematical College, Sichuan University , Chengdu 610064, PR China

Abstract

For any integers x and y, let $(x, y)$ and $[x, y]$ stand for the greatest common divisor and the least common multiple of x and y, respectively. Let $a,b$ and n be positive integers, and let $S=\{x_1, \ldots , x_n\}$ be a set of n distinct positive integers. We denote by $(S^a)$ and $[S^a]$ the $n\times n$ matrices having the ath power of $(x_i,x_j)$ and $[x_i,x_j]$, respectively, as the $(i,j)$-entry. Bourque and Ligh [‘On GCD and LCM matrices’, Linear Algebra Appl. 174 (1992), 65–74] showed that if S is factor closed (that is, S contains all positive divisors of any element of S), then the GCD matrix $(S)$ divides the LCM matrix $[S]$ (written as $(S)\mid [S]$) in the ring $M_n({\mathbb Z})$ of $n\times n$ matrices over the integers. Hong [‘Divisibility properties of power GCD matrices and power LCM matrices’, Linear Algebra Appl. 428 (2008), 1001–1008] proved that $(S^a)\mid (S^b)$, $(S^a)\mid [S^b]$ and $[S^a]\mid [S^b]$ in the ring $M_{n}({\mathbb Z})$ when $a\mid b$ and S is a divisor chain (namely, there is a permutation $\sigma $ of order n such that $x_{\sigma (1)}\mid \cdots \mid x_{\sigma (n)}$). In this paper, we show that if $a\mid b$ and S is factor closed, then $(S^a)\mid (S^b)$, $(S^a)\mid [S^b]$ and $[S^a]\mid [S^b]$ in the ring $M_{n}({\mathbb Z})$. The proof is algebraic and p-adic. Our result extends the Bourque–Ligh theorem. Finally, several interesting conjectures are proposed.

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The research was partially supported by the National Science Foundation of China, Grant no. 12171332.

References

Altinisik, E., ‘On inverses of GCD matrices associated with multiplicative functions and a proof of the Hong–Loewy conjecture’, Linear Algebra Appl. 430 (2009), 13131327.10.1016/j.laa.2008.10.025CrossRefGoogle Scholar
Apostol, T. M., ‘Arithmetic properties of generalized Ramanujan sums’, Pacific J. Math. 41 (1972), 281293.10.2140/pjm.1972.41.281CrossRefGoogle Scholar
Bege, A., ‘Generalized LCM matrices’, Publ. Math. Debrecen 79 (2011), 309315.10.5486/PMD.2011.5131CrossRefGoogle Scholar
Bourque, K. and Ligh, S., ‘On GCD and LCM matrices’, Linear Algebra Appl. 174 (1992), 6574.10.1016/0024-3795(92)90042-9CrossRefGoogle Scholar
Bourque, K. and Ligh, S., ‘Matrices associated with classes of arithmetical functions’, J. Number Theory 45 (1993), 367376.10.1006/jnth.1993.1083CrossRefGoogle Scholar
Bourque, K. and Ligh, S., ‘Matrices associated with arithmetical functions’, Linear Multilinear Algebra 34 (1993), 261267.10.1080/03081089308818225CrossRefGoogle Scholar
Bourque, K. and Ligh, S., ‘Matrices associated with multiplicative functions’, Linear Algebra Appl. 216 (1995), 267275.10.1016/0024-3795(93)00154-RCrossRefGoogle Scholar
Chen, L., Feng, Y., Hong, S. F. and Qiu, M., ‘On the divisibility of matrices associated with multiplicative functions’, Publ. Math. Debrecen 100 (2022), 323335.10.5486/PMD.2022.9014CrossRefGoogle Scholar
Feng, W. D., Hong, S. F. and Zhao, J., ‘Divisibility properties of power LCM matrices by power GCD matrices on GCD-closed sets’, Discrete Math. 309 (2009), 26272639.10.1016/j.disc.2008.06.014CrossRefGoogle Scholar
Haukkanen, P., Mattila, M. and Mantysalo, J., ‘Studying the singularity of LCM-type matrices via semilattice structures and their Möbius functions’, J. Combin. Theory Ser. A 135 (2015), 181200.10.1016/j.jcta.2015.05.002CrossRefGoogle Scholar
Hilberdink, T. and Pushnitski, A., ‘Spectral asymptotics for a family of LCM matrices’, St. Petersburg Math. J. 34 (2023), 463481.10.1090/spmj/1764CrossRefGoogle Scholar
Hong, S. A., Hu, S. N. and Lin, Z. B., ‘On a certain arithmetical determinant’, Acta Math. Hungar. 150 (2016), 372382.10.1007/s10474-016-0664-4CrossRefGoogle Scholar
Hong, S. A. and Lin, Z. B., ‘New results on the value of a certain arithmetical determinant’, Publ. Math. Debrecen 93 (2018), 171187.10.5486/PMD.2018.8139CrossRefGoogle Scholar
Hong, S. F., ‘On Bourque–Ligh conjecture of LCM matrices’, Adv. Math. (China) 25 (1996), 565568.Google Scholar
Hong, S. F., ‘On the Bourque–Ligh conjecture of least common multiple matrices’, J. Algebra 218 (1999), 216228.10.1006/jabr.1998.7844CrossRefGoogle Scholar
Hong, S. F., ‘Gcd-closed sets and determinants of matrices associated with arithmetical functions’, Acta Arith. 101 (2002), 321332.10.4064/aa101-4-2CrossRefGoogle Scholar
Hong, S. F., ‘On the factorization of LCM matrices on GCD-closed sets’, Linear Algebra Appl. 345 (2002), 225233.10.1016/S0024-3795(01)00499-2CrossRefGoogle Scholar
Hong, S. F., ‘Factorization of matrices associated with classes of arithmetical functions’, Colloq. Math. 98 (2003), 113123.10.4064/cm98-1-9CrossRefGoogle Scholar
Hong, S. F., ‘Nonsingularity of matrices associated with classes of arithmetical functions’, J. Algebra 281 (2004), 114.10.1016/j.jalgebra.2004.07.026CrossRefGoogle Scholar
Hong, S. F., ‘Nonsingularity of least common multiple matrices on GCD-closed sets’, J. Number Theory 113 (2005), 19.10.1016/j.jnt.2005.03.004CrossRefGoogle Scholar
Hong, S. F., ‘Divisibility properties of power GCD matrices and power LCM matrices’, Linear Algebra Appl. 428 (2008), 10011008.10.1016/j.laa.2007.08.037CrossRefGoogle Scholar
Hong, S. F. and Enoch Lee, K. S., ‘Asymptotic behavior of eigenvalues of reciprocal power LCM matrices’, Glasg. Math. J. 50 (2008), 163174.10.1017/S0017089507003953CrossRefGoogle Scholar
Hong, S. F. and Loewy, R., ‘Asymptotic behavior of the smallest eigenvalue of matrices associated with completely even functions  $\left(\operatorname{mod}\;r\right)$ ’, Int. J. Number Theory 7 (2011), 16811704.10.1142/S179304211100437XCrossRefGoogle Scholar
Korkee, I., Mattila, M. and Haukkanen, P., ‘A lattice-theoretic approach to the Bourque–Ligh conjecture’, Linear Multilinear Algebra 67 (2019), 24712487.10.1080/03081087.2018.1494695CrossRefGoogle Scholar
Li, M. and Tan, Q. R., ‘Divisibility of matrices associated with multiplicative functions’, Discrete Math. 311 (2011), 22762282.10.1016/j.disc.2011.07.015CrossRefGoogle Scholar
Smith, H. J. S., ‘On the value of a certain arithmetical determinant’, Proc. Lond. Math. Soc. (3) 7 (1875–1876), 208212.10.1112/plms/s1-7.1.208CrossRefGoogle Scholar
Tan, Q. R. and Li, M., ‘Divisibility among power GCD matrices and among power LCM matrices on finitely many coprime divisor chains’, Linear Algebra Appl. 438 (2013), 14541466.10.1016/j.laa.2012.08.036CrossRefGoogle Scholar
Yamasaki, Y., ‘Arithmetical properties of multiple Ramanujan sums’, Ramanujan J. 21 (2010), 241261.10.1007/s11139-010-9223-8CrossRefGoogle Scholar
Zhu, G. Y., ‘On the divisibility among power GCD and power LCM matrices on GCD-closed sets’, Int. J. Number Theory 18 (2022), 13971408.10.1142/S1793042122500701CrossRefGoogle Scholar
Zhu, G. Y., ‘On a certain determinant for a U.F.D.’, Colloq. Math. 171 (2023), 4959.10.4064/cm8722-1-2022CrossRefGoogle Scholar
Zhu, G. Y. and Li, M., ‘On the divisibility among power LCM matrices on GCD-closed sets’, Bull. Aust. Math. Soc. 107 (2023), 3139.10.1017/S0004972722000491CrossRefGoogle Scholar