Skip to main content Accesibility Help
×
×
Home

THE ERROR TERM IN THE SATO–TATE THEOREM OF BIRCH

  • M. RAM MURTY (a1) and NEHA PRABHU (a2)
Abstract

We establish an error term in the Sato–Tate theorem of Birch. That is, for $p$ prime, $q=p^{r}$ and an elliptic curve $E:y^{2}=x^{3}+ax+b$ , we show that

$$\begin{eqnarray}\#\{(a,b)\in \mathbb{F}_{q}^{2}:\unicode[STIX]{x1D703}_{a,b}\in I\}=\unicode[STIX]{x1D707}_{ST}(I)q^{2}+O_{r}(q^{7/4})\end{eqnarray}$$
for any interval $I\subseteq [0,\unicode[STIX]{x1D70B}]$ , where the quantity $\unicode[STIX]{x1D703}_{a,b}$ is defined by $2\sqrt{q}\cos \unicode[STIX]{x1D703}_{a,b}=q+1-E(\mathbb{F}_{q})$ and $\unicode[STIX]{x1D707}_{ST}(I)$ denotes the Sato–Tate measure of the interval $I$ .

Copyright
Corresponding author
References
Hide All
[1] Baier, S. and Zhao, L., ‘The Sato–Tate conjecture on average for small angles’, Trans. Amer. Math. Soc. 361(4) (2009), 18111832.
[2] Banks, W. D. and Shparlinski, I. E., ‘Sato–Tate, cyclicity, and divisibility statistics on average for elliptic curves of small height’, Israel J. Math. 173 (2009), 253277.
[3] Birch, B. J., ‘How the number of points of an elliptic curve over a fixed prime field varies’, J. Lond. Math. Soc. 43 (1968), 5760.
[4] David, C., Koukoulopoulos, D. and Smith, E., ‘Sums of Euler products and statistics on elliptic curves’, Math. Ann. 368 (2017), 685752.
[5] Deligne, P., ‘Formes modulaires et représentations l-adiques’, in: Séminaire Bourbaki, Vol. 1968/69, Exp. No. 355, Lecture Notes in Mathematics, 175 (Springer, Berlin, 1971), 139172.
[6] Deligne, P., ‘La conjecture de Weil. I’, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 273307.
[7] Deligne, P., ‘La conjecture de Weil. II’, Publ. Math. Inst. Hautes Études Sci. 52 (1980), 137252.
[8] Deuring, M., ‘Die Typen der Multiplikatorenringe elliptischer Funktionenkörper’, Abh. Math. Semin. Univ. Hambg. 14 (1941), 197272.
[9] Fisher, B., ‘Equidistribution theorems’, in: Columbia University Number Theory Seminar, New York, 1992, Astérisque, 228 (Société Mathématique de France, Paris, 1995), 6979.
[10] Katz, N. M., Gauss Sums, Kloosterman Sums, and Monodromy Groups (Princeton University Press, Princeton, NJ, 1988).
[11] Knightly, A. and Li, C., Traces of Hecke Operators, Mathematical Surveys and Monographs, 133 (American Mathematical Society, Providence, RI, 2006).
[12] Lang, S., Introduction to Modular Forms, Fundamental Principles of Mathematical Sciences, 222 (Springer, Berlin, 1995), with appendixes by D. Zagier and Walter Feit, corrected reprint of the 1976 original.
[13] Lenstra, H. W. Jr, ‘Factoring integers with elliptic curves’, Ann. of Math. (2) 126(3) (1987), 649673.
[14] Michel, P., ‘Rang moyen de familles de courbes elliptiques et lois de Sato–Tate’, Monatsh. Math. 120 (1995), 127136.
[15] Miller, S. J. and Ram Murty, M., ‘Effective equidistribution and the Sato–Tate law for families of elliptic curves’, J. Number Theory 131 (2011), 2544.
[16] Montgomery, H. L., Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, 84 (American Mathematical Society, Providence, RI, 1994).
[17] Ram Murty, M., ‘Oscillations of Fourier coefficients of modular forms’, Math. Ann. 262 (1983), 431446.
[18] Ram Murty, M. and Sinha, K., ‘Effective equidistribution of eigenvalues of Hecke operators’, J. Number Theory 129 (2009), 681714.
[19] Niederreiter, H., ‘The distribution of values of Kloosterman sums’, Arch. Math. 56 (1991), 270277.
[20] Schoof, R., ‘Nonsingular plane cubic curves over finite fields’, J. Combin. Theory Ser. A 46(2) (1987), 183211.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed