Skip to main content Accessibility help
×
×
Home

FINITE TRIFACTORISED GROUPS AND $\unicode[STIX]{x1D70B}$ -DECOMPOSABILITY

  • L. S. KAZARIN (a1), A. MARTÍNEZ-PASTOR (a2) and M. D. PÉREZ-RAMOS (a3)
Abstract

We derive some structural properties of a trifactorised finite group $G=AB=AC=BC$ , where $A$ , $B$ , and $C$ are subgroups of $G$ , provided that $A=A_{\unicode[STIX]{x1D70B}}\times A_{\unicode[STIX]{x1D70B}^{\prime }}$ and $B=B_{\unicode[STIX]{x1D70B}}\times B_{\unicode[STIX]{x1D70B}^{\prime }}$ are $\unicode[STIX]{x1D70B}$ -decomposable groups, for a set of primes $\unicode[STIX]{x1D70B}$ .

Copyright
Corresponding author
anamarti@mat.upv.es
Footnotes
Hide All

The first author was supported by Project VIP-008 of Yaroslavl P. Demidov State University and by a research grant from the Universitat de València as research visitor (Programa Propi d’Ajudes a la Investigació de la Universitat de València, Subprograma d’Atracció de Talent de VLC-Campus, Estades d’investigadors convidats (2017)). The second and third authors were supported by Proyecto MTM2014-54707-C3-1-P, Ministerio de Economía y Competitividad, Spain.

Footnotes
References
Hide All
[1] Amberg, B., Franciosi, S. and de Giovanni, F., Products of Groups (Clarendon Press, Oxford, 1992).
[2] Arad, Z. and Fisman, E., ‘On finite factorizable groups’, J. Algebra 86 (1984), 522548.
[3] Ballester-Bolinches, A., Martínez-Pastor, A. and Pedraza-Aguilera, M. C., ‘Finite trifactorized groups and formations’, J. Algebra 226 (2000), 9901000.
[4] Ballester-Bolinches, A., Martínez-Pastor, A. and Pérez-Ramos, M. D., ‘Nilpotent-like Fitting formations of finite soluble groups’, Bull. Aust. Math. Soc. 62 (2000), 427433.
[5] Ballester-Bolinches, A., Martínez-Pastor, A., Pedraza-Aguilera, M. C. and Pérez-Ramos, M. D., ‘On nilpotent-like Fitting formations’, in: Groups St Andrews 2001 in Oxford, Vol. I, London Mathematical Society Lecture Note Series, 304 (Cambridge University Press, Cambridge, 2003), 3138.
[6] Doerk, K. and Hawkes, T., Finite Soluble Groups (Walter de Gruyter, Berlin, 1992).
[7] Kazarin, L. S., ‘Factorizations of finite groups by solvable subgroups’, Ukr. Mat. J. 43(7) (1991), 883886.
[8] Kazarin, L. S., Martínez-Pastor, A. and Pérez-Ramos, M. D., ‘On the product of a 𝜋-group and a 𝜋-decomposable group’, J. Algebra 315 (2007), 640653.
[9] Kazarin, L. S., Martínez-Pastor, A. and Pérez-Ramos, M. D., ‘On the product of two 𝜋-decomposable soluble groups’, Publ. Mat. 53 (2009), 439456.
[10] Kazarin, L. S., Martínez-Pastor, A. and Pérez-Ramos, M. D., ‘Extending the Kegel–Wielandt theorem through 𝜋-decomposable groups’, in: Groups St Andrews 2009 in Bath, Vol. 2, London Mathematical Society Lecture Note Series, 388 (Cambridge University Press, Cambridge, 2011), 415423.
[11] Kazarin, L. S., Martínez-Pastor, A. and Pérez-Ramos, M. D., ‘A reduction theorem for a conjecture on products of two 𝜋-decomposable groups’, J. Algebra 379 (2013), 301313.
[12] Kazarin, L. S., Martínez-Pastor, A. and Pérez-Ramos, M. D., ‘On the product of two 𝜋-decomposable groups’, Rev. Mat. Iberoam. 31 (2015), 5168.
[13] Kegel, O. H., ‘Zur Struktur mehrfach faktorisierter endlicher Gruppen’, Math. Z. 87 (1965), 4248.
[14] Pennington, E., ‘Trifactorisable groups’, Bull. Aust. Math. Soc. 8 (1973), 461469.
[15] Revin, D. O. and Vdovin, E. P., ‘Hall subgroups in finite groups’, in: Ischia Group Theory 2004, Contemporary Mathematics, 402 (American Mathematical Society, Providence, RI, 2006), 229263.
[16] Robinson, D. J., A Course in the Theory of Groups (Springer, New York, 1982).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords

MSC classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed