Skip to main content
×
Home

FREDHOLM MODULES OVER GRAPH $C^{\ast }$-ALGEBRAS

  • TYRONE CRISP (a1)
Abstract

We present two applications of explicit formulas, due to Cuntz and Krieger, for computations in $K$-homology of graph $C^{\ast }$-algebras. We prove that every $K$-homology class for such an algebra is represented by a Fredholm module having finite-rank commutators, and we exhibit generating Fredholm modules for the $K$-homology of quantum lens spaces.

Copyright
References
Hide All
[1]Arici F., Brain S. and Landi G., ‘The Gysin sequence for quantum lens spaces’, Preprint, 2014, http://arxiv.org/abs/1401.6788.
[2]Arici F., Kaad J. and Landi G., ‘Pimsner algebras and Gysin sequences from principal circle actions’, Preprint, 2014, http://arxiv.org/abs/1409.5335.
[3]Atiyah M. F., K-Theory, Lecture Notes by D. W. Anderson (W. A. Benjamin, New York, 1967).
[4]Blackadar B., K-Theory for Operator Algebras, 2nd edn, Mathematical Sciences Research Institute Publications, 5 (Cambridge University Press, Cambridge, 1998).
[5]Crisp T., ‘Corners of graph algebras’, J. Operator Theory 60(2) (2008), 253271.
[6]Cuntz J., ‘A class of C -algebras and topological Markov chains. II. Reducible chains and the Ext-functor for C -algebras’, Invent. Math. 63(1) (1981), 2540.
[7]Cuntz J. and Krieger W., ‘A class of C -algebras and topological Markov chains’, Invent. Math. 56(3) (1980), 251268.
[8]Drinen D. and Tomforde M., ‘Computing K-theory and Ext for graph C -algebras’, Illinois J. Math. 46(1) (2002), 8191.
[9]Goffeng M. and Mesland B., ‘Spectral triples and finite summability on Cuntz–Krieger algebras’, Preprint, 2014, http://arxiv.org/abs/1401.2123.
[10]Hawkins E. and Landi G., ‘Fredholm modules for quantum Euclidean spheres’, J. Geom. Phys. 49(3–4) (2004), 272293.
[11]Higson N. and Roe J., Analytic K-Homology, Oxford Mathematical Monographs (Oxford University Press, Oxford, 2000).
[12]Hong J. H. and Szymański W., ‘Quantum spheres and projective spaces as graph algebras’, Comm. Math. Phys. 232(1) (2002), 157188.
[13]Hong J. H. and Szymański W., ‘Quantum lens spaces and graph algebras’, Pacific J. Math. 211(2) (2003), 249263.
[14]Hong J. H. and Szymański W., ‘Noncommutative balls and mirror quantum spheres’, J. Lond. Math. Soc. (2) 77(3) (2008), 607626.
[15]Kumjian A. and Pask D., ‘C -algebras of directed graphs and group actions’, Ergod. Th. & Dynam. Sys. 19(6) (1999), 15031519.
[16]Lance E. C., ‘The compact quantum group SO(3)q’, J. Operator Theory 40(2) (1998), 295307.
[17]Pask D. and Raeburn I., ‘On the K-theory of Cuntz–Krieger algebras’, Publ. Res. Inst. Math. Sci. 32(3) (1996), 415443.
[18]Podleś P., ‘Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2) and SO(3) groups’, Comm. Math. Phys. 170(1) (1995), 120.
[19]Raeburn I., Graph Algebras, CBMS Regional Conference Series in Mathematics, 103 (American Mathematical Society, Providence, RI, 2005).
[20]Raeburn I. and Szymański W., ‘Cuntz–Krieger algebras of infinite graphs and matrices’, Trans. Amer. Math. Soc. 356(1) (2004), 3959 (electronic).
[21]Rosenberg J. and Schochet C., ‘The Künneth theorem and the universal coefficient theorem for Kasparov’s generalized K-functor’, Duke Math. J. 55(2) (1987), 431474.
[22]Szymański W., ‘General Cuntz–Krieger uniqueness theorem’, Internat. J. Math. 13(5) (2002), 549555.
[23]Tomforde M., ‘Computing Ext for graph algebras’, J. Operator Theory 49(2) (2003), 363387.
[24]Vaksman L. L. and Soĭbel’man Ya. S., ‘Algebra of functions on the quantum group SU(n + 1), and odd-dimensional quantum spheres’, Algebra i Analiz 2(5) (1990), 101120.
[25]Woronowicz S. L., ‘Twisted SU(2) group. An example of a noncommutative differential calculus’, Publ. Res. Inst. Math. Sci. 23(1) (1987), 117181.
[26]Yi I., ‘K-theory and K-homology of C -algebras for row-finite graphs’, Rocky Mountain J. Math. 37(5) (2007), 17231742.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 78 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 15th December 2017. This data will be updated every 24 hours.