Published online by Cambridge University Press: 15 December 2022
Wu and Shi [‘A note on k-Galois LCD codes over the ring $\mathbb {F}_q + u\mathbb {F}_q$’, Bull. Aust. Math. Soc. 104(1) (2021), 154–161] studied
$ k $-Galois LCD codes over the finite chain ring
$\mathcal {R}=\mathbb {F}_q+u\mathbb {F}_q$, where
$u^2=0$ and
$ q=p^e$ for some prime p and positive integer e. We extend the results to the finite nonchain ring
$ \mathcal {R} =\mathbb {F}_q+u\mathbb {F}_q+v\mathbb {F}_q+uv\mathbb {F}_q$, where
$u^2=u,v^2=v $ and
$ uv=vu $. We define a correspondence between the
$ l $-Galois dual of linear codes over
$ \mathcal {R} $ and the
$ l $-Galois dual of their component codes over
$ \mathbb {F}_q $. Further, we construct Euclidean LCD and
$ l $-Galois LCD codes from linear codes over
$ \mathcal {R} $. We prove that any linear code over
$ \mathcal {R} $ is equivalent to a Euclidean code over
$\mathbb {F}_q$ with
$ q>3 $ and an
$ l $-Galois LCD code over
$ \mathcal {R}$ with
$0<l<e$ and
$p^{e-l}+1\mid p^e-1$. Finally, we investigate MDS codes over
$ \mathcal {R}$.
The first and second authors are supported by UGC, New Delhi, Govt. of India under grant DEC18-417932 and CSIR, New Delhi, Govt. of India under F. No. 09/086(1407)/2019-EMR-I, respectively.