[1]
Alspach, D. E., ‘A fixed point free nonexpansive map’, Proc. Amer. Math. Soc.
82(3) (1981), 423–424.
[2]
Amir, D. and Ziegler, Z., ‘Relative Chebyshev centers in normed linear spaces. II’, J. Approx. Theory
38(4) (1983), 293–311.
[3]
Casini, E., ‘Degree of convexity and product spaces’, Comment. Math. Univ. Carolin.
31(4) (1990), 637–641.
[4]
Clarkson, J. A., ‘Uniformly convex spaces’, Trans. Amer. Math. Soc.
40(3) (1936), 396–414.
[5]
Day, M. M., James, R. C. and Swaminathan, S., ‘Normed linear spaces that are uniformly convex in every direction’, Canad. J. Math.
23 (1971), 1051–1059.
[6]
Garkavi, A. L., ‘On the optimal net and best cross-section of a set in a normed space’, Izv. Akad. Nauk SSSR Ser. Mat.
26 (1962), 87–106.
[7]
Geremia, R. and Sullivan, F., ‘Multidimensional volumes and moduli of convexity in Banach spaces’, Ann. Mat. Pura Appl. (4)
127 (1981), 231–251.
[8]
Goebel, K., ‘On the structure of minimal invariant sets for nonexpansive mappings’, Ann. Univ. Mariae Curie-Skłodowska Sect. A
29 (1975), 73–77.
[9]
Goebel, K. and Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, 28 (Cambridge University Press, Cambridge, 1990).
[10]
Karlovitz, L. A., ‘Existence of fixed points of nonexpansive mappings in a space without normal structure’, Pacific J. Math.
66(1) (1976), 153–159.
[11]
Kirk, W. A., ‘A fixed point theorem for mappings which do not increase distances’, Amer. Math. Monthly
72 (1965), 1004–1006.
[12]
Kuczumow, T., Reich, S. and Schmidt, M., ‘A fixed point property of ℓ
_{1} -product spaces’, Proc. Amer. Math. Soc.
119(2) (1993), 457–463.
[13]
Lin, P. K., ‘
k-uniform rotundity is equivalent to k-uniform convexity’, J. Math. Anal. Appl.
132(2) (1988), 349–355.
[14]
Llorens-Fuster, E., ‘The fixed point property for renormings of ℓ
_{2}
’, Arab. J. Math.
1(4) (2012), 511–528.
[15]
Milman, V. D., ‘Geometric theory of Banach spaces. II. Geometry of the unit ball’, Uspekhi Mat. Nauk
26(6(162)) (1971), 73–149.
[16]
Sullivan, F., ‘A generalization of uniformly rotund Banach spaces’, Canad. J. Math.
31(3) (1979), 628–636.
[17]
Tan, K. K. and Xu, H. K., ‘On fixed point theorems of nonexpansive mappings in product spaces’, Proc. Amer. Math. Soc.
113(4) (1991), 983–989.
[18]
Veena Sangeetha, M., ‘On relative
-uniform rotundity, normal structure and fixed point property for nonexpansive maps’, Preprint.
[19]
Veena Sangeetha, M. and Veeramani, P., ‘Uniform rotundity with respect to finite-dimensional subspaces’, J. Convex Anal.
25(4) (2018), 1223–1252.
[20]
Wiśnicki, A., ‘On the fixed points of nonexpansive mappings in direct sums of Banach spaces’, Studia Math.
207(1) (2011), 75–84.