Skip to main content Accessibility help
×
Home

INEQUALITIES FOR DRAGOMIR’S MAPPINGS VIA STIELTJES INTEGRALS

  • TOMASZ SZOSTOK (a1)

Abstract

We present some inequalities for the mappings defined by Dragomir [‘Two mappings in connection to Hadamard’s inequalities’, J. Math. Anal. Appl.167 (1992), 49–56]. We analyse known inequalities connected with these mappings using a recently developed method connected with stochastic orderings and Stieltjes integrals. We show that some of these results are optimal and others may be substantially improved.

Copyright

References

Hide All
[1]Dragomir, S. S., ‘Two mappings in connection to Hadamard’s inequalities’, J. Math. Anal. Appl. 167 (1992), 4956.
[2]Dragomir, S. S., ‘Further properties of some mappings associated with Hermite–Hadamard inequalities’, Tamkang J. Math. 34(1) (2003), 4956.
[3]Dragomir, S. S., Milošević, D. S. and Sándor, J., ‘On some refinements of Hadamard’s inequalities and applications’, Univ. Belgrad, Publ. Elek. Fak. Sci. Math. 4 (1993), 2124.
[4]Dragomir, S. S. and Pearce, C. E. M., Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs (Victoria University, Melbourne, 2000).
[5]Kołodziej, T., Nierówności typu Hermite’a–Hadamarda dla odwzorowań Dragomira, Master’s Thesis, University of Silesia, Katowice, Poland (in Polish).
[6]Levin, V. I. and Stečkin, S. B., ‘Inequalities’, Amer. Math. Soc. Transl. (2) 14 (1960), 129.
[7]Niculescu, C. P. and Persson, L.-E., Convex Functions and Their Applications. A Contemporary Approach, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 23 (Springer, New York, 2006).
[8]Ohlin, J., ‘On a class of measures of dispersion with application to optimal reinsurance’, ASTIN Bulletin 5 (1969), 249266.
[9]Olbryś, A. and Szostok, T., ‘Inequalities of the Hermite–Hadamard type involving numerical differentiation formulas’, Results Math. 67 (2015), 403416.
[10]Pečarić, J. E., ‘Remarks on two interpolations of Hadamard’s inequalities’, Contributions Macedonian Acad. of Sci. and Arts, Sect. of Math. and Technical Sciences (Scopje) 13 (1992), 912.
[11]Rajba, T., ‘On the Ohlin lemma for Hermite–Hadamard–Fejer type inequalities’, Math. Inequal. Appl. 17(2) (2014), 557571.
[12]Rajba, T., ‘On a generalization of a theorem of Levin and Stečkin and inequalities of the Hermite–Hadamard type’, Math. Inequal. Appl. 20(2) (2017), 363375.
[13]Szostok, T., ‘Ohlin’s lemma and some inequalities of the Hermite–Hadamard type’, Aequationes Math. 89 (2015), 915926.
[14]Szostok, T., ‘Levin Steckin theorem and inequalities of the Hermite–Hadamard type’, Preprint, arXiv:1411.7708.
[15]Szostok, T., ‘Functional inequalities involving numerical differentiation formulas of order two’, Bull. Malays. Math. Sci. Soc. 41(4) (2018), 20532066.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

MSC classification

Related content

Powered by UNSILO

INEQUALITIES FOR DRAGOMIR’S MAPPINGS VIA STIELTJES INTEGRALS

  • TOMASZ SZOSTOK (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.