The theory of continued fractions is an extremely useful tool in approximating irrational numbers by rational numbers. Any number 
 $x\in \mathbb {R}{\setminus} \mathbb {Q}$
 can be uniquely represented by a continued fraction of the form
$x\in \mathbb {R}{\setminus} \mathbb {Q}$
 can be uniquely represented by a continued fraction of the form 
 $$ \begin{align*} x=a_0(x)+\cfrac{1}{a_1(x)+\cfrac{1}{a_2(x)+\cfrac{1}{\ddots}}}=[a_0(x); a_1(x),a_2(x),\ldots], \end{align*} $$
$$ \begin{align*} x=a_0(x)+\cfrac{1}{a_1(x)+\cfrac{1}{a_2(x)+\cfrac{1}{\ddots}}}=[a_0(x); a_1(x),a_2(x),\ldots], \end{align*} $$
where 
 $a_n(x)\in \mathbb {Z}, a_n(x)\geq 1$
 for
$a_n(x)\in \mathbb {Z}, a_n(x)\geq 1$
 for 
 $n\geq 1$
, is known as the nth partial quotient of x. The classical theory of continued fractions shows that the convergents of the partial quotients of x give exactly the best rational approximation of x (see [Reference Khinchin11, Theorems 16 and 17]. The nth convergent is given by
$n\geq 1$
, is known as the nth partial quotient of x. The classical theory of continued fractions shows that the convergents of the partial quotients of x give exactly the best rational approximation of x (see [Reference Khinchin11, Theorems 16 and 17]. The nth convergent is given by 
 $$ \begin{align*} \frac{p_n}{q_n}:=[a_0(x); a_1(x),\ldots, a_n(x)], \end{align*} $$
$$ \begin{align*} \frac{p_n}{q_n}:=[a_0(x); a_1(x),\ldots, a_n(x)], \end{align*} $$
where 
 $p_n,q_n\in \mathbb {Z}$
 are coprime and
$p_n,q_n\in \mathbb {Z}$
 are coprime and 
 $q_n\geq 1$
. The speed of approximation for any irrational number x is related to the size of the partial quotients by
$q_n\geq 1$
. The speed of approximation for any irrational number x is related to the size of the partial quotients by 
 $$ \begin{align*} \bigg| x - \frac{p_n}{q_n}\bigg| < \frac{1}{q_n(a_{n+1}q_n + q_{n-1})} \quad \text{for all } n\in\mathbb{N}. \end{align*} $$
$$ \begin{align*} \bigg| x - \frac{p_n}{q_n}\bigg| < \frac{1}{q_n(a_{n+1}q_n + q_{n-1})} \quad \text{for all } n\in\mathbb{N}. \end{align*} $$
 Kleinbock and Wadleigh [Reference Kleinbock and Wadleigh12] showed that Dirichlet’s theorem is optimal in a precise sense. For any nonincreasing function 
 $\psi :\mathbb {N}\to \mathbb {R}_+$
, define the set of
$\psi :\mathbb {N}\to \mathbb {R}_+$
, define the set of 
 $\psi $
-Dirichlet improvable numbers by
$\psi $
-Dirichlet improvable numbers by
 $$ \begin{align*} D(\psi):=\bigg\{x\in\mathbb R: \begin{array}{ll}\exists\, N \ {\rm such\ that\ the\ system}\ |qx-p|\, <\, \psi(t), |q|<t\ \\ \text{has a nontrivial integer solution for all }t>N\end{array}\!\!\bigg\}. \end{align*} $$
$$ \begin{align*} D(\psi):=\bigg\{x\in\mathbb R: \begin{array}{ll}\exists\, N \ {\rm such\ that\ the\ system}\ |qx-p|\, <\, \psi(t), |q|<t\ \\ \text{has a nontrivial integer solution for all }t>N\end{array}\!\!\bigg\}. \end{align*} $$
Then, Kleinbock and Wadleigh showed for 
 $x\in [0,1) \setminus \mathbb {Q}$
 that:
$x\in [0,1) \setminus \mathbb {Q}$
 that: 
- 
(i)  $x\in D(\psi )$
 if $x\in D(\psi )$
 if $a_{n+1}(x)a_n(x)\, \le \,\psi (q_n)/4$
 for all sufficiently large n; $a_{n+1}(x)a_n(x)\, \le \,\psi (q_n)/4$
 for all sufficiently large n;
- 
(ii)  $x\not \in D(\psi )$
 if $x\not \in D(\psi )$
 if $a_{n+1}(x)a_n(x)\,>\, \psi (q_n)$
 for infinitely many n. $a_{n+1}(x)a_n(x)\,>\, \psi (q_n)$
 for infinitely many n.
The metric theory for the set 
 $D(\psi )$
 is fully characterised in the papers [Reference Bos, Hussain and Simmons2, Reference Huang, Wu and Xu8, Reference Hussain, Kleinbock, Wadleigh and Wang9].
$D(\psi )$
 is fully characterised in the papers [Reference Bos, Hussain and Simmons2, Reference Huang, Wu and Xu8, Reference Hussain, Kleinbock, Wadleigh and Wang9].
 My thesis contains results on the metric theory of continued fraction and Lüroth series expansions. The first result gives metrical properties of the product of partial quotients in the plane. Let 
 $\Psi :\mathbb N\to \mathbb R_+$
 be a function. Define the set, for
$\Psi :\mathbb N\to \mathbb R_+$
 be a function. Define the set, for 
 $(t_1, \ldots , t_m)\in \mathbb R_{+}^m$
,
$(t_1, \ldots , t_m)\in \mathbb R_{+}^m$
, 
 $$ \begin{align*} \Lambda(\Psi):=\bigg\{(x, y)\in[0,1]^2:\max\bigg\{\prod_{i=1}^ma_{n+i}^{t_i}(x), \prod_{i=1}^ma_{n+i}^{t_i}(y)\bigg\} \geq \Psi(n) \ \text{for all} \ n\geq 1\bigg\}. \end{align*} $$
$$ \begin{align*} \Lambda(\Psi):=\bigg\{(x, y)\in[0,1]^2:\max\bigg\{\prod_{i=1}^ma_{n+i}^{t_i}(x), \prod_{i=1}^ma_{n+i}^{t_i}(y)\bigg\} \geq \Psi(n) \ \text{for all} \ n\geq 1\bigg\}. \end{align*} $$
For the one-dimensional analogue of this set, the Hausdorff dimension (for 
 $m=2$
) was determined in [Reference Bakhtawar, Hussain, Kleinbock and Wang1] and can also be deduced from [Reference Hussain and Shulga10]. In my thesis, I prove the following two-dimensional result. Throughout,
$m=2$
) was determined in [Reference Bakhtawar, Hussain, Kleinbock and Wang1] and can also be deduced from [Reference Hussain and Shulga10]. In my thesis, I prove the following two-dimensional result. Throughout, 
 $\dim _{H}$
 is the Hausdorff dimension.
$\dim _{H}$
 is the Hausdorff dimension.
Theorem 1 [Reference Brown-Sarre and Hussain5].
 Let 
 $\Psi $
 be a positive function. Then,
$\Psi $
 be a positive function. Then, 
 $$ \begin{align*} \dim_{H} (\Lambda(\Psi))=\frac{2+\tau}{1+\tau}\quad \text{where } \log\tau=\limsup_{n\to\infty}\frac{\log\log\Psi(n)}{n}.\end{align*} $$
$$ \begin{align*} \dim_{H} (\Lambda(\Psi))=\frac{2+\tau}{1+\tau}\quad \text{where } \log\tau=\limsup_{n\to\infty}\frac{\log\log\Psi(n)}{n}.\end{align*} $$
 For a nondecreasing function 
 $\varphi : \mathbb {N} \to [2,\infty )$
 and
$\varphi : \mathbb {N} \to [2,\infty )$
 and 
 $\ell \in \mathbb {N}$
, define the set
$\ell \in \mathbb {N}$
, define the set 
 $$ \begin{align*} \mathcal{F}_{\ell}(\varphi) := \bigg\{ x\in [0,1): \begin{matrix} a_{j}(x)\cdots a_{j+\ell-1}(x) \geq \varphi(n) \\ a_{k}(x)\cdots a_{k+\ell-1}(x) \geq \varphi(n) \end{matrix}\; \text{ with } 1\leq j < k \leq n \text{ for i.m. } n\in\mathbb{N}\bigg\}, \end{align*} $$
$$ \begin{align*} \mathcal{F}_{\ell}(\varphi) := \bigg\{ x\in [0,1): \begin{matrix} a_{j}(x)\cdots a_{j+\ell-1}(x) \geq \varphi(n) \\ a_{k}(x)\cdots a_{k+\ell-1}(x) \geq \varphi(n) \end{matrix}\; \text{ with } 1\leq j < k \leq n \text{ for i.m. } n\in\mathbb{N}\bigg\}, \end{align*} $$
where ‘i.m.’ stands for ‘infinitely many’. The set 
 $\mathcal {F}_{\ell }(\varphi )$
 arises in the determination of laws of large numbers for partial quotients. Phillip [Reference Philipp13] proved that there is no reasonable function
$\mathcal {F}_{\ell }(\varphi )$
 arises in the determination of laws of large numbers for partial quotients. Phillip [Reference Philipp13] proved that there is no reasonable function 
 $\sigma :\mathbb {N}\to \mathbb {R}_+$
 such that
$\sigma :\mathbb {N}\to \mathbb {R}_+$
 such that 
 ${(a_1(x)+a_2(x)+\cdots +a_n(x))}/{\sigma (n)}$
 converges almost everywhere as
${(a_1(x)+a_2(x)+\cdots +a_n(x))}/{\sigma (n)}$
 converges almost everywhere as 
 $n \to \infty $
. However, Diamond and Vaaler [Reference Diamond and Vaaler6] showed that such a relation holds if we omit the largest partial quotient. Hu et al. [Reference Hu, Hussain and Yu7] extended this further by proving the case for the sum of products of two consecutive partial quotients and omitting the largest product. They proved that almost every
$n \to \infty $
. However, Diamond and Vaaler [Reference Diamond and Vaaler6] showed that such a relation holds if we omit the largest partial quotient. Hu et al. [Reference Hu, Hussain and Yu7] extended this further by proving the case for the sum of products of two consecutive partial quotients and omitting the largest product. They proved that almost every 
 $x\in [0,1)$
 satisfies
$x\in [0,1)$
 satisfies 
 $$ \begin{align} \lim_{n\to\infty} \cfrac{1}{n\log^2 n}\hspace{0.5pt}\bigg( \sum_{j=1}^n a_j(x)a_{j+1}(x) - \max_{1\leq j \leq n} a_j(x)a_{j+1}(x)\bigg) = \cfrac{1}{2\log 2}. \end{align} $$
$$ \begin{align} \lim_{n\to\infty} \cfrac{1}{n\log^2 n}\hspace{0.5pt}\bigg( \sum_{j=1}^n a_j(x)a_{j+1}(x) - \max_{1\leq j \leq n} a_j(x)a_{j+1}(x)\bigg) = \cfrac{1}{2\log 2}. \end{align} $$
This led Tan et al. in [Reference Tan, Tian and Wang14] and Tan and Zhou in [Reference Tan and Zhou15] to find a zero-one law for the Lebesgue measure of 
 $\mathcal {F}_1(\varphi )$
. We extend this work to
$\mathcal {F}_1(\varphi )$
. We extend this work to 
 $\mathcal {F}_{3}(\varphi )$
.
$\mathcal {F}_{3}(\varphi )$
.
Theorem 2 [Reference Brown-Sarre, González Robert and Hussain4].
 Let 
 $\varphi :\mathbb {N}\to [2,\infty )$
 be nondecreasing. The Lebesgue measure
$\varphi :\mathbb {N}\to [2,\infty )$
 be nondecreasing. The Lebesgue measure 
 $\lambda $
 of
$\lambda $
 of 
 $\mathcal {F}_{3}(\varphi )$
 is given by
$\mathcal {F}_{3}(\varphi )$
 is given by 
 $$ \begin{align*} \lambda(\mathcal{F}_{3}(\varphi)) = \begin{cases} 0 &\text{if } \displaystyle\sum_{n\geq 1} \frac{n\log^{4}\varphi(n)}{\varphi^2(n)} + \frac{\log \varphi(n)}{\varphi(n)}<\infty, \\ 1 &\text{if } \displaystyle\sum_{n\geq 1} \frac{n\log^{4}\varphi(n)}{\varphi^2(n)} + \frac{\log \varphi(n)}{\varphi(n)}=\infty. \end{cases} \end{align*} $$
$$ \begin{align*} \lambda(\mathcal{F}_{3}(\varphi)) = \begin{cases} 0 &\text{if } \displaystyle\sum_{n\geq 1} \frac{n\log^{4}\varphi(n)}{\varphi^2(n)} + \frac{\log \varphi(n)}{\varphi(n)}<\infty, \\ 1 &\text{if } \displaystyle\sum_{n\geq 1} \frac{n\log^{4}\varphi(n)}{\varphi^2(n)} + \frac{\log \varphi(n)}{\varphi(n)}=\infty. \end{cases} \end{align*} $$
 I further calculate the Hausdorff dimension for 
 $\mathcal {F}_3(\varphi )$
. Define
$\mathcal {F}_3(\varphi )$
. Define 
 $g_3:\mathbb {R}\to \mathbb {R}$
 by
$g_3:\mathbb {R}\to \mathbb {R}$
 by 
 $$ \begin{align*} g_3(s) := \frac{3s^3-5s^2+4s-1}{s^2-s+1}. \end{align*} $$
$$ \begin{align*} g_3(s) := \frac{3s^3-5s^2+4s-1}{s^2-s+1}. \end{align*} $$
For a function 
 $\varphi :\mathbb {N}\to \mathbb {R}_+$
, let B and b be defined by
$\varphi :\mathbb {N}\to \mathbb {R}_+$
, let B and b be defined by 
 $$ \begin{align} \log B = \liminf_{n\to\infty} \frac{\log \varphi(n)}{n} \quad\text{and}\quad \log b = \liminf_{n\to\infty} \frac{\log\log \varphi(n)}{n}. \end{align} $$
$$ \begin{align} \log B = \liminf_{n\to\infty} \frac{\log \varphi(n)}{n} \quad\text{and}\quad \log b = \liminf_{n\to\infty} \frac{\log\log \varphi(n)}{n}. \end{align} $$
Theorem 3 [Reference Brown-Sarre, González Robert and Hussain4].
 Let 
 $\varphi :\mathbb {N}\to [2,\infty )$
 be nondecreasing. Then, the Hausdorff dimension of
$\varphi :\mathbb {N}\to [2,\infty )$
 be nondecreasing. Then, the Hausdorff dimension of 
 $\mathcal {F}_3(\varphi )$
 is given by
$\mathcal {F}_3(\varphi )$
 is given by 
 $$ \begin{align*} \dim_{H} \mathcal{F}_3(\varphi) = \begin{cases} 1 &\text{if } B=1, \\ \inf\{s \geq 0: P(T,-g_3(s)\log B - s \log |T'|) \leq 0\} &\text{if } 1<B<\infty, \\ {1}/{(1+b)} &\text{if } B=\infty, \end{cases} \end{align*} $$
$$ \begin{align*} \dim_{H} \mathcal{F}_3(\varphi) = \begin{cases} 1 &\text{if } B=1, \\ \inf\{s \geq 0: P(T,-g_3(s)\log B - s \log |T'|) \leq 0\} &\text{if } 1<B<\infty, \\ {1}/{(1+b)} &\text{if } B=\infty, \end{cases} \end{align*} $$
where 
 $P(T,\cdot )$
 is a pressure function.
$P(T,\cdot )$
 is a pressure function.
 The thesis also contains a result on the Lebesgue measure of a set associated with the Lüroth series expansion of a real number. Every 
 $x\in (0,1]$
 has a Lüroth series expansion
$x\in (0,1]$
 has a Lüroth series expansion 
 $$ \begin{align*} x= \frac{1}{d_1} + \frac{1}{d_1(d_1-1)d_2} + \frac{1}{d_1(d_1-1)d_2(d_2-1)d_3} + \cdots \end{align*} $$
$$ \begin{align*} x= \frac{1}{d_1} + \frac{1}{d_1(d_1-1)d_2} + \frac{1}{d_1(d_1-1)d_2(d_2-1)d_3} + \cdots \end{align*} $$
with a unique sequence 
 $(d_n)_{n\geq 1}$
 of integers at least
$(d_n)_{n\geq 1}$
 of integers at least 
 $2$
. Let
$2$
. Let 
 $m\in \mathbb {N}$
,
$m\in \mathbb {N}$
, 
 $\mathbf {t}=(t_0,\ldots , t_{m-1})\in \mathbb {R}_{+}^m$
 and
$\mathbf {t}=(t_0,\ldots , t_{m-1})\in \mathbb {R}_{+}^m$
 and 
 $\liminf _{n\to \infty }\Psi (n)>1$
. Define the set
$\liminf _{n\to \infty }\Psi (n)>1$
. Define the set 
 $$ \begin{align*} \mathfrak{E}_{\mathbf{t}}(\Psi) := \bigg\{ x\in [0,1): \prod_{i=0}^{m-1} d_{n+i}^{t_i}(x) \geq \Psi(n) \text{ for infinitely many }n\in\mathbb{N}\bigg\}, \end{align*} $$
$$ \begin{align*} \mathfrak{E}_{\mathbf{t}}(\Psi) := \bigg\{ x\in [0,1): \prod_{i=0}^{m-1} d_{n+i}^{t_i}(x) \geq \Psi(n) \text{ for infinitely many }n\in\mathbb{N}\bigg\}, \end{align*} $$
and the numbers
 $$ \begin{align*} t_{\min} := \min\{t_0,t_1,\ldots, t_{m-1}\}, \quad \; t_{\max} :=\max\{t_0,t_1,\ldots, t_{m-1}\} \end{align*} $$
$$ \begin{align*} t_{\min} := \min\{t_0,t_1,\ldots, t_{m-1}\}, \quad \; t_{\max} :=\max\{t_0,t_1,\ldots, t_{m-1}\} \end{align*} $$
and
 $$ \begin{align*} \ell(\mathbf{t}):=\# \{j\in \{0,\ldots, m-1\}: t_j=t_{\max}\}. \end{align*} $$
$$ \begin{align*} \ell(\mathbf{t}):=\# \{j\in \{0,\ldots, m-1\}: t_j=t_{\max}\}. \end{align*} $$
Theorem 4 [Reference Brown-Sarre, González Robert and Hussain3].
 Let 
 $m\in \mathbb {N}$
 and
$m\in \mathbb {N}$
 and 
 $\mathbf {t}\in \mathbb {R}_{+}^m$
 be arbitrary. If
$\mathbf {t}\in \mathbb {R}_{+}^m$
 be arbitrary. If 
 $\liminf _{n\to \infty } \Psi (n)>1,$
 then
$\liminf _{n\to \infty } \Psi (n)>1,$
 then 
 $$ \begin{align} \lambda\left(\mathfrak{E}_{\mathbf{t}}(\Psi)\right) = \begin{cases} 0 &\text{if } \displaystyle\sum_{n=1}^{\infty} \cfrac{\left( \log\Psi(n)\right)^{\ell(\mathbf{t}) - 1} }{\Psi(n)^{{1}/{t_{\max}}}} < \infty, \\[2ex] 1 &\text{if } \displaystyle\sum_{n=1}^{\infty} \cfrac{\left( \log\Psi(n)\right)^{\ell(\mathbf{t}) - 1}}{\Psi(n)^{{1}/{t_{\max}}}} = \infty. \end{cases} \end{align} $$
$$ \begin{align} \lambda\left(\mathfrak{E}_{\mathbf{t}}(\Psi)\right) = \begin{cases} 0 &\text{if } \displaystyle\sum_{n=1}^{\infty} \cfrac{\left( \log\Psi(n)\right)^{\ell(\mathbf{t}) - 1} }{\Psi(n)^{{1}/{t_{\max}}}} < \infty, \\[2ex] 1 &\text{if } \displaystyle\sum_{n=1}^{\infty} \cfrac{\left( \log\Psi(n)\right)^{\ell(\mathbf{t}) - 1}}{\Psi(n)^{{1}/{t_{\max}}}} = \infty. \end{cases} \end{align} $$
Theorem 5 [Reference Brown-Sarre, González Robert and Hussain3].
 Let B and b be given by (2). For any 
 $m\in \mathbb {N}$
 and
$m\in \mathbb {N}$
 and 
 $\mathbf {t}\in \mathbb {R}_{+}^{m}$
,
$\mathbf {t}\in \mathbb {R}_{+}^{m}$
, 
 $$ \begin{align*} \dim_{H} \mathfrak{E}_{\mathbf{t}}(\Psi) = \begin{cases} 1 &\text{if } B=1, \\ {1}/{(b+1)} &\text{if } B=\infty. \end{cases} \end{align*} $$
$$ \begin{align*} \dim_{H} \mathfrak{E}_{\mathbf{t}}(\Psi) = \begin{cases} 1 &\text{if } B=1, \\ {1}/{(b+1)} &\text{if } B=\infty. \end{cases} \end{align*} $$
Theorem 6 [Reference Brown-Sarre, González Robert and Hussain3].
 Suppose 
 $m=2$
. Let B and b be given by (2) and assume
$m=2$
. Let B and b be given by (2) and assume 
 $1<B<\infty $
. For a given
$1<B<\infty $
. For a given 
 $\mathbf {t}=(t_0,t_1)\in \mathbb {R}_{+}^2$
, define
$\mathbf {t}=(t_0,t_1)\in \mathbb {R}_{+}^2$
, define 
 $$ \begin{align*} f_{t_0,t_1}(s):= \frac{s^2}{t_0t_1\max \{ {s}/{t_1} + {(1-s)}/{t_0}, {s}/{t_0}\}}. \end{align*} $$
$$ \begin{align*} f_{t_0,t_1}(s):= \frac{s^2}{t_0t_1\max \{ {s}/{t_1} + {(1-s)}/{t_0}, {s}/{t_0}\}}. \end{align*} $$
Then, the Hausdorff dimension of 
 $\mathfrak {E}_{\mathbf {t}}(\Psi )$
 is the unique solution of
$\mathfrak {E}_{\mathbf {t}}(\Psi )$
 is the unique solution of 
 $$ \begin{align*} \sum_{d=2}^{\infty} \frac{1}{d^s(d-1)^s B^{f_{t_0,t_1}(s)}}=1. \end{align*} $$
$$ \begin{align*} \sum_{d=2}^{\infty} \frac{1}{d^s(d-1)^s B^{f_{t_0,t_1}(s)}}=1. \end{align*} $$
Acknowledgement
I am thankful to my supervisors Associate Professor Mumtaz Hussain and Dr. Gerardo González Robert for their help and support throughout my studies.
 
  
 
 
 
