Hostname: page-component-cb9f654ff-mwwwr Total loading time: 0 Render date: 2025-08-25T10:36:17.107Z Has data issue: false hasContentIssue false

The normal structure of James quasi reflexive space

Published online by Cambridge University Press:  17 April 2009

Daryl Tingley
Affiliation:
Department of Mathematics and Statistics, University of New Brunswick Predericton, N. B., Canada, E3B 5A3
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

It is shown that weakly compact sets of James quasi reflexive space have normal structure.

Information

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1990

References

[1]Borwein, J.M. and Sims, B., ‘Nonexpansive mappings on Banach lattices and related topics’, Houston J. Math. 10 (1984), 339355.Google Scholar
[2]Brodskii, M.S. and Milman, D.P., ‘On the center of a convex set’, Dokl. Akad. Nauk SSSR 59 (1948), 837840.Google Scholar
[3]James, R.C., ‘A non-reflexive Banach space isometric with its second conjugate space’, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 134177.CrossRefGoogle ScholarPubMed
[4]Karlovitz, L.A., ‘Existence of fixed points for nonexpansive mappings in a space without normal structure’, Pacific J. Math. 66 (1976), 153159.CrossRefGoogle Scholar
[5]Kirk, W.A., ‘A fixed point theorem for mappings, which do not increase distances’, Amer. Math. Monthly 72 (1965), 10041006.CrossRefGoogle Scholar
[6]Khamsi, M.A., ‘Normal structure for Banach spaces with Schauder decomposition’, Canadian Math. Bull. 32 (1989), ??–??.CrossRefGoogle Scholar
[7]Khamsi, M.A., ‘James quasi reflexive space has the fixed point property’, Bull. Austral. Math. Soc. 39 (1989), 2530.CrossRefGoogle Scholar
[8]Lin, P.K., ‘Unconditional bases and fixed points of nonexpansive mappings’, Pacific J. Math. 116 (1985), 6976.CrossRefGoogle Scholar
[9]Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces, Vol. I and II (Springer-Verlag, Berlin, Heidelberg, New York, 1977 and 1979).CrossRefGoogle Scholar
[10]Maurey, B., Points fixes des contractions sur un convexe ferme de L1: Seminaire d'analyse fonctionelle (Ecole Polytechnique, Palaiseau, Exposé No. VIII, 1980/81).Google Scholar
[11]Swaminathan, S., ‘Normal structure in Banach spaces and its generalization’, Contemp. Math. 18, 201215. (A.M.S., Providence, R.I.).CrossRefGoogle Scholar