Skip to main content Accesibility Help


  • SHANE CHERN (a1)

In this note, we provide refined estimates of two sums involving the Euler totient function,

$$\begin{eqnarray}\mathop{\sum }_{n\leq x}\unicode[STIX]{x1D719}\biggl(\biggl[\frac{x}{n}\biggr]\biggr)\quad \text{and}\quad \mathop{\sum }_{n\leq x}\frac{\unicode[STIX]{x1D719}([x/n])}{[x/n]},\end{eqnarray}$$
where $[x]$ denotes the integral part of real $x$ . The above summations were recently considered by Bordellès et al. [‘On a sum involving the Euler function’, Preprint, 2018, arXiv:1808.00188] and Wu [‘On a sum involving the Euler totient function’, Preprint, 2018, hal-01884018].

Hide All
[1] Apostol, T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics (Springer, New York–Heidelberg, 1976).
[2] Bordellès, O., Arithmetic Tales, translated from the French by Véronique Bordellès, Universitext (Springer, London, 2012).
[3] Bordellès, O., Dai, L., Heyman, R., Pan, H. and Shparlinski, I. E., ‘On a sum involving the Euler function’, Preprint, 2018, arXiv:1808.00188.
[4] Hardy, G. H., ‘On Dirichlet’s divisor problem’, Proc. Lond. Math. Soc. (2) 15 (1916), 125.
[5] Huxley, M. N., ‘Exponential sums and lattice points. III’, Proc. Lond. Math. Soc. (3) 87(3) (2003), 591609.
[6] Vaaler, J. D., ‘Some extremal functions in Fourier analysis’, Bull. Amer. Math. Soc. (N.S.) 12(2) (1985), 183216.
[7] Wu, J., ‘On a sum involving the Euler totient function’, Preprint, 2018, available at hal-01884018.
[8] Wu, J., ‘Note on a paper by Bordellès, Dai, Heyman, Pan and Shparlinski’, Period. Math. Hungar., to appear.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed