Skip to main content Accesibility Help
×
×
Home

On locally Lipschitz vector-valued invex functions

  • N.D. Yen (a1) and P.H. Sach (a1)
Abstract

The four types of invexity for locally Lipschitz vector-valued functions recently introduced by T. W. Reiland are studied in more detail. It is shown that the class of restricted K-invex in the limit functions is too large to obtain desired optimisation theorems and the other three classes are contained in the class of functions which are invex 0 in the sense of our previous joint paper with B. D. Craven and T. D. Phuong. We also prove that the extended image of a locally Lipschitz vector-valued invex function is pseudoconvex in the sense of J. Borwein at each of its points.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On locally Lipschitz vector-valued invex functions
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      On locally Lipschitz vector-valued invex functions
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      On locally Lipschitz vector-valued invex functions
      Available formats
      ×
Copyright
References
Hide All
[1]Aubin, J.P. and Ekeland, I., Applied nonlinear analysis (Wiley, New York, 1984).
[2]Borwein, J., ‘Weak tangent cones and optimization in Banach space’, SIAM J. Control Optim. 16 (1978), 512522.
[3]Clarke, F.H., Optimization and nonsmooth analysis (Wiley, New York, 1983).
[4]Craven, B.D., ‘Invex functions and constrained local minima’, Bull. Austral. Math. Soc. 24 (1981), 357366.
[5]Craven, B.D. and Glover, B.M., ‘Invex functions and duality’, J. Austral. Math. Soc. Ser. A 39 (1985), 120.
[6]Craven, B.D., Sach, P.H., Yen, N.D. and Phuong, T.D., ‘A new class of invex multifunctions’, Papers presented at the Summer School in Erice (Sicily), June 19–30, 1991; Depart. of Math., Melbourne University, Preprint no.21 (1991), Nonsmooth Optimization: Methods and Applications (to appear).
[7]Hanson, M.A., ‘On sufficiency of the Kuhn-Tucker conditions’, J. Math. Anal. Appl. 80 (1981), 545550.
[8]Mangasarian, O.L., Nonlinear programming (McGraw-Hill, New York, 1969).
[9]Mond, B. and Weir, T., ‘Generalized concavity and duality’, in Generalized concavity in optimization and economics, (Schaible, S. and Ziemba, W. T., Editors) (Academic Press, New York, 1981), pp. 263279.
[10]Reiland, T.W., ‘Nonsmooth invexity’, Bull. Austral. Math. Soc. 42 (1990), 437446.
[11]Reiland, T.W., ‘Generalized invexity for nonsmooth vector-valued mappings’, Numer. Funct. Anal. Optim. 10 (1989), 11911202.
[12]Sach, P.H. and Craven, B.D., ‘Invexity in multifunction optimization’, Numer. Funct. Anal. Optim. 12 (1991), 383394.
[13]Sach, P.H. and Craven, B.D., ‘Invex multifunctions and duality’, Numer. Funct. Anal. Optim. 12 (1991), 575591.
[14]Tanaka, Y., ‘Note on generalized convex functions’, J. Optim. Theor. Appl. 66 (1990), 345349.
[15]Tanaka, Y., Fukushima, M. and Ibaraki, T., ‘On generalized pseudoconvex functions’, J. Math. Anal. Appl. 144 (1989), 342355.
[16]Wolfe, P. A., ‘A duality theorem for nonlinear programming’, Quart. Appl. Math. 19 (1961), 239244.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed