No CrossRef data available.
Published online by Cambridge University Press: 08 October 2024
We settle the noninner automorphism conjecture for finite p-groups ( $p> 2$) with certain conditions. Also, we give an elementary and short proof of the main result of Ghoraishi [‘On noninner automorphisms of finite nonabelian p-groups’, Bull. Aust. Math. Soc. 89(2) (2014) 202–209].
$p> 2$) with certain conditions. Also, we give an elementary and short proof of the main result of Ghoraishi [‘On noninner automorphisms of finite nonabelian p-groups’, Bull. Aust. Math. Soc. 89(2) (2014) 202–209].
The first author is grateful to SERB, Department of Science and Technology, for supporting the research under grant MTR/2022/000331.
 $p$
-groups of class 2 have noninner automorphisms of order
$p$
-groups of class 2 have noninner automorphisms of order 
 $p$
’, J. Algebra 312(2) (2007), 876–879.CrossRefGoogle Scholar
$p$
’, J. Algebra 312(2) (2007), 876–879.CrossRefGoogle Scholar $p$
-groups have non-inner automorphisms of order p and some cohomology’, J. Algebra 323(3) (2010), 779–789.CrossRefGoogle Scholar
$p$
-groups have non-inner automorphisms of order p and some cohomology’, J. Algebra 323(3) (2010), 779–789.CrossRefGoogle Scholar $p$
-groups of class 3 have noninner automorphisms of order
$p$
-groups of class 3 have noninner automorphisms of order 
 $p$
’, Beitr. Algebra Geom. 54(1) (2013), 363–381.CrossRefGoogle Scholar
$p$
’, Beitr. Algebra Geom. 54(1) (2013), 363–381.CrossRefGoogle Scholar $p$
 for finite
$p$
 for finite 
 $p$
-groups of coclass 2’, J. Group Theory 17(2) (2014) 267–272.CrossRefGoogle Scholar
$p$
-groups of coclass 2’, J. Group Theory 17(2) (2014) 267–272.CrossRefGoogle Scholar $p$
 of finite
$p$
 of finite 
 $p$
-groups’, J. Algebra 250(1) (2002), 283–287.CrossRefGoogle Scholar
$p$
-groups’, J. Algebra 250(1) (2002), 283–287.CrossRefGoogle Scholar $p$
-groups with non-cyclic center have a non-inner automorphism of order
$p$
-groups with non-cyclic center have a non-inner automorphism of order 
 $p$
’, Arch. Math. (Basel) 117(2) (2021), 129–132.CrossRefGoogle Scholar
$p$
’, Arch. Math. (Basel) 117(2) (2021), 129–132.CrossRefGoogle Scholar $p$
-groups’, Bull. Aust. Math. Soc. 87(1) (2013), 24–26.CrossRefGoogle Scholar
$p$
-groups’, Bull. Aust. Math. Soc. 87(1) (2013), 24–26.CrossRefGoogle Scholar $p$
-groups’, Bull. Aust. Math. Soc. 89(2) (2014), 202–209.CrossRefGoogle Scholar
$p$
-groups’, Bull. Aust. Math. Soc. 89(2) (2014), 202–209.CrossRefGoogle Scholar $p$
 for finite
$p$
 for finite 
 $p$
-groups of restricted coclass’, Arch. Math. (Basel) 117(4) (2021), 361–368.CrossRefGoogle Scholar
$p$
-groups of restricted coclass’, Arch. Math. (Basel) 117(4) (2021), 361–368.CrossRefGoogle Scholar $p$
-groups of class 2’, J. Lond. Math. Soc. (2) 40(1) (1965), 268–275.CrossRefGoogle Scholar
$p$
-groups of class 2’, J. Lond. Math. Soc. (2) 40(1) (1965), 268–275.CrossRefGoogle Scholar $p$
 in finite
$p$
 in finite 
 $p$
-groups of coclass 3’, Monatsh. Math. 183(4) (2017), 679–697.CrossRefGoogle Scholar
$p$
-groups of coclass 3’, Monatsh. Math. 183(4) (2017), 679–697.CrossRefGoogle Scholar $p$
 in some finite
$p$
 in some finite 
 $p$
-groups’, Bull. Aust. Math. Soc. 87(2) (2013), 272–277.CrossRefGoogle Scholar
$p$
-groups’, Bull. Aust. Math. Soc. 87(2) (2013), 272–277.CrossRefGoogle Scholar