[1]
Akbari, S., Tavallaee, A. and Khalashi Ghezelahmad, S., ‘On the complement of the intersection graph of submodules of a module’, J. Algebra Appl.
14(8) (2015), Article ID 1550116.

[2]
Anderson, D. D. and Naseer, M., ‘Beck’s coloring of a commutative ring’, J. Algebra
159 (1993), 500–514.

[3]
Anderson, D. F. and Livingston, P. S., ‘The zero-divisor graph of a commutative ring’, J. Algebra
217 (1999), 434–447.

[4]
Beck, I., ‘Coloring of a commutative ring’, J. Algebra
116 (1988), 208–226.

[5]
Behboodi, M. and Rakeei, Z., ‘The annihilating-ideal graph of commutative rings I’, J. Algebra Appl.
10(4) (2011), 727–739.

[6]
Behboodi, M. and Rakeei, Z., ‘The annihilating-ideal graph of commutative rings II’, J. Algebra Appl.
10(4) (2011), 741–753.

[7]
Bollobás, B., Modern Graph Theory (Springer, New York, 1998).

[8]
Bosak, J., ‘The graphs of semigroups’, in: Theory of Graphs and its Applications: Proceedings of the Symposium held in Smolenice in June 1963 (Academic Press, New York, 1964), 119–125.

[9]
Chakrabarty, I., Ghosh, S., Mukherjee, T. and Sen, M., ‘Intersection graphs of ideals of rings’, Discrete Math.
309 (2009), 5381–5392.

[10]
Csákány, B. and Pollák, G., ‘The graph of subgroups of a finite group’, Czechoslovak Math. J.
19 (1969), 241–247.

[11]
Davey, B. A. and Priestley, H. A., Introduction to Lattices and Order (Cambridge University Press, Cambridge, 2002).

[12]
DeMeyer, F. R., McKenzie, T. and Schneider, K., ‘The zero-divisor graph of a commutative semigroup’, Semigroup Forum
65 (2002), 206–214.

[13]
Dilworth, R., ‘A decomposition theorem for partially ordered sets’, Ann. Math. (2)
51 (1950), 161–166.

[14]
Erdős, P., Goodman, A.W. and Pósa, L., ‘The representation of a graph by set intersections’, Canad. J. Math.
18(1) (1966), 106–112.

[15]
Halaš, R. and Jukl, M., ‘On Beck’s coloring of partially ordered sets’, Discrete Math.
309 (2009), 4584–4589.

[16]
Joshi, V., ‘Zero divisor graph of a partially ordered set with respect to an ideal’, Order
29(3) (2012), 499–506.

[17]
Joshi, V. and Khiste, A., ‘Complement of the zero divisor graph of a lattice’, Bull. Aust. Math. Soc.
89 (2014), 177–190.

[18]
LaGrange, J. D. and Roy, K. A., ‘Poset graphs and the lattice of graph annihilators’, Discrete Math.
313(10) (2013), 1053–1062.

[19]
Lam, T. Y., Lectures on Modules and Rings (Springer, New York, 1998.).

[20]
Lovász, L., ‘Normal hypergraphs and the perfect graph conjecture’, Discrete Math.
2 (1972), 253–267.

[21]
Lu, D. and Wu, T., ‘The zero-divisor graphs of partially ordered sets and an application to semigroups’, Graph Combin.
26 (2010), 793–804.

[22]
Mirsky, L., ‘A dual of Dilworth’s decomposition theorem’, Amer. Math. Monthly
78 (1971), 876–877.

[23]
Patil, A., Waphare, B. N. and Joshi, V., ‘Perfect zero-divisor graphs’, Discrete Math.
340(4) (2017), 740–745.

[24]
Redmond, S. P., ‘The zero-divisor graph of a noncommutative ring’, Int. J. Commut. Rings
1(4) (2002), 203–211.

[25]
Visweswaran, S. and Patel, H. D., ‘On the clique number of the complement of the annihilating ideal graph of a commutative ring’, Beitr. Algebra Geom.
57 (2016), 307–320.

[26]
Zelinka, B., ‘Intersection graphs of finite abelian groups’, Czechoslovak Math. J.
25 (1975), 171–174.