Skip to main content

On the stable classification of certain 4-manifolds

  • Alberto Cavicchioli (a1), Friedrich Hegenbarth (a2) and Dušan Repovš (a3)

We study the s-cobordism type of closed orientable (smooth or PL) 4–manifolds with free or surface fundamental groups. We prove stable classification theorems for these classes of manifolds by using surgery theory.

Hide All
[1]Bauer, S., The Homotopy type of a 4-manifold with finite fundamental group, Lecture Notes in Mathematics 1361 (Springer-Verlag, Berlin, Heidelberg, New York, 1988).
[2]Baues, H.J., Combinatorial homotopy and 4-dimensional complexes (Walter de Gruyter, Berlin, New York, 1991).
[3]Cappell, S.E. and Shaneson, J.L., ‘On four-dimensional surgery and applications’, Comment. Math. Helv. 46 (1971), 500528.
[4]Cappell, S.E., ‘Mayer-Vietoris sequences in Hermitian K-theory’, in Proc. Conf. Battelle Memorial Inst., Seattle, Wash., 1972, (Springer-Verlag, Berlin, Heidelberg, New York, 1973), pp. 478512.
[5]Cavicchioli, A. and Hegenbarth, F., ‘On the intersection forms of closed 4-manifolds’, Publ. Mat. 36 (1992), 7383.
[6]Cavicchioli, A. and Hegenbarth, F., ‘On 4-manifolds with free fundamental group’, Forum Math. 6 (1994), 415429.
[7]Cavicchioli, A., Hegenbarth, F. and Repovš, D., ‘Four-manifolds with surface fundamental groups’ (to appear).
[8]Cochran, T.D. and Habegger, N., ‘On the homotopy theory of simply-connected four manifolds’, Topology 29 (1990), 419440.
[9]Donaldson, S.K., ‘The orientation of Yang-Mills moduli spaces and 4-manifold topology’, J. Differential Geom. 26 (1987), 397428.
[10]Freedman, M.H., ‘The topology of 4-manifolds’, J. Differential Geom. 17 (1982), 357453.
[11]Freedman, M.H. and Quinn, F., Topology of 4-manifolds (Princeton Univ. Press, Princeton, New Jersey, 1990).
[12]Hambleton, I. and Kreck, M., ‘On the classification of topological 4-manifolds with finite fundamental group’, Math. Ann. 280 (1988), 85104.
[13]Hillman, J.A., ‘On 4-manifolds homotopy equivalent to surface bundles over surfaces’, Topology Appl. 40 (1991), 275286.
[14]Hillman, J.A., ‘Free products and 4-dimensional connected sums’ (to appear).
[15]Kirby, R.C. and Siebenmann, L.C., Foundational essays on topological manifolds, smoothings and triangulations, Ann. of Math. Studies 88 (Princeton Univ. Press, Princeton, New Jersey, 1977).
[16]Mandelbaum, R., ‘Four-dimensional topology: an introduction’, Bull. Amer. Math. Soc. 2 (1980), 1159.
[17]Milnor, J., ‘Whitehead torsion’, Bull. Amer. Math. Soc. 72 (1966), 358426.
[18]Shaneson, J.L., ‘Non-simply connected surgery and some results in low dimension topology’, Comment. Math. Helv. 45 (1970), 333352.
[19]Shaneson, J.L., ‘On non-simply connected manifolds’, in Proc. Sympos. Pure Math. 22 (Amer. Math. Soc, Providence, R.I., 1970), pp. 221229.
[20]Sullivan, D., ‘Triangulating and smoothing homotopy equivalences and homeomorphisms’, in Geometric Topology Sem. Notes (Princeton Univ. Press, Princeton, New Jersey, 1967).
[21]Thorn, R., ‘Quelques propriétés globales des variétés’, Comment. Math. Helv. 28 (1954), 1786.
[22]Wall, C.T.C., ‘On simply connected 4-manifolds’, J. London Math. Soc. 39 (1964), 141149.
[23]Wall, C.T.C., Surgery on Compact Manifolds (Academic Press, London, New York, 1970).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed