No CrossRef data available.
Published online by Cambridge University Press: 28 January 2025
Let  $\{\omega _n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables on a probability space
$\{\omega _n\}_{n\geq 1}$ be a sequence of independent and identically distributed random variables on a probability space  $(\Omega , \mathcal {F}, \mathbb {P})$, each uniformly distributed on the unit circle
$(\Omega , \mathcal {F}, \mathbb {P})$, each uniformly distributed on the unit circle  $\mathbb {T}$, and let
$\mathbb {T}$, and let  $\ell _n=cn^{-\tau }$ for some
$\ell _n=cn^{-\tau }$ for some  $c>0$ and
$c>0$ and  $0<\tau <1$. Let
$0<\tau <1$. Let  $I_{n}=(\omega _n,\omega _n+\ell _n)$ be the random interval with left endpoint
$I_{n}=(\omega _n,\omega _n+\ell _n)$ be the random interval with left endpoint  $\omega _n$ and length
$\omega _n$ and length  $\ell _n$. We study the asymptotic property of the covering time
$\ell _n$. We study the asymptotic property of the covering time  $N_n(x)=\sharp \{1\leq k\leq n: x\in I_k\}$ for each
$N_n(x)=\sharp \{1\leq k\leq n: x\in I_k\}$ for each  $x\in \mathbb {T}$. We prove the quenched central limit theorem for the covering time, that is,
$x\in \mathbb {T}$. We prove the quenched central limit theorem for the covering time, that is,  $\mathbb {P}$-almost surely,
$\mathbb {P}$-almost surely,  $$ \begin{align*}\frac{N_n(x)-\mathbb{E}_{\mathbb{P}}(N_n(x))}{\sqrt{\sum_{k=1}^n \ell_k(1-\ell_k)}}\end{align*} $$
$$ \begin{align*}\frac{N_n(x)-\mathbb{E}_{\mathbb{P}}(N_n(x))}{\sqrt{\sum_{k=1}^n \ell_k(1-\ell_k)}}\end{align*} $$
converges in law to the standard normal distribution.
This work is supported by NSFC 11901204 and 12271418.
 $\mu$
-Dvoretzky random covering of the circle’, Bernoulli 27(2) (2021), 1270–1290.CrossRefGoogle Scholar
$\mu$
-Dvoretzky random covering of the circle’, Bernoulli 27(2) (2021), 1270–1290.CrossRefGoogle Scholar