Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-13T18:02:06.659Z Has data issue: false hasContentIssue false

Quotient supermanifolds

Published online by Cambridge University Press:  17 April 2009

Claudio Bartocci
Affiliation:
Dipartimento di Matemaitcs, Università di Genova, via Dodecanesco 35, 16146 Genova, Italy e-mail: bartocci@dima.unige.it
Ugo Bruzzo
Affiliation:
Scuola Internazionale Superiore di Studi Avanzati, via Beirut 2–4, 34014 Trieste, Italy e-mail: bruzzo@sissa.it
Daniel Hernández Ruipérez
Affiliation:
Departamento de Matemática Pura y Aplicada, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain e-mail: ruiperez@gugu.usal.es
Vladimir Pestov
Affiliation:
School of Mathematical and Computing Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand e-mail: vladimir.pestov@vuw.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A necessary and sufficient condition for the existence of a supermanifold structure on a quotient defined by an equivalence relation is established. Furthermore, we show that an equivalence relation R on a Berezin-Leĭtes-Kostant supermanifold X determines a quotient supermanifold X/R if and only if the restriction R0 of R to the underlying smooth manifold X0 of X determines a quotient smooth manifold X0/R0.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Bartocci, C., , C., Bruzzo, U., and Ruipérez, D. HernándezThe geometry of supermanifolds (Kluwer, Dordrecht, 1991).Google Scholar
[2]Bartocci, C., Bruzzo, U., Ruipérez, D. Hernández and Pestov, V.G.An axiomatic approach to supermanifolds’, Soviet Math. Dokl. 44 (1992), 744748.Google Scholar
[3]Bartocci, C., Bruzzo, U., Ruipérez, D. Hernández and Pestov, V.G.Foundations of supermanifold theory: the axiomatic approach’, Differential Geom. Appl. 3 (1993), 135155.Google Scholar
[4]Gabriel, P. ‘Construction de préschemas quotients’, in Schémas en groupes I (SGA 3), Lecture Notes Maths 151 (Springer-Verlag, Berlin, Heidelberg, New York, 1970), pp. 250286.Google Scholar
[5]Kostant, B. ‘Graded manifolds, graded Lie theory, and prequantization’, in Differential geometric methods in mathematical physics, Lecture Notes in Maths 570 (Springer-Verlag, Berlin, Heidelberg, New York, 1977), pp. 177306.CrossRefGoogle Scholar
[6]Almorox, A. López ‘Supergauge theories in graded manifolds’, in Differential geometric methods in mathematical physics, Lecture Notes Maths 1251 (Springer-Verlag, Berlin, Heidelberg, New York, 1987), pp. 114136.Google Scholar