Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-16T08:33:34.618Z Has data issue: false hasContentIssue false

A SYSTEM OF FUNCTIONAL EQUATIONS SATISFIED BY COMPONENTS OF A QUADRATIC FUNCTION AND ITS STABILITY

Published online by Cambridge University Press:  27 February 2019

KANET PONPETCH*
Affiliation:
Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand email kanet.bkp@gmail.com
VICHIAN LAOHAKOSOL
Affiliation:
Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand email fscivil@ku.ac.th
SUKRAWAN MAVECHA
Affiliation:
Department of Mathematics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand email sukrawan.ta@kmitl.ac.th

Abstract

A system of functional equations satisfied by the components of a quadratic function is derived via their corresponding circulant matrix. Given such a system of functional equations, general solutions are determined and a stability result for such a system is established.

Type
Research Article
Copyright
© 2019 Australian Mathematical Publishing Association Inc. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brzdek, J., Popa, D., Rasa, I. and Xu, B., ‘Ulam stability of operators’, in: Mathematical Analysis and its Applications, 1 (Academic Press, Elsevier, Oxford, 2018).Google Scholar
Förg-Rob, W. and Schwaiger, J., ‘On the stability of a system of functional equations characterizing generalized hyperbolic and trigonometric functions’, Aequationes Math. 45 (1993), 285296.10.1007/BF01855886Google Scholar
Hyers, D. H., ‘On the stability of the linear functional equation’, Proc. Natl Acad. Sci. USA 27 (1941), 222224.10.1073/pnas.27.4.222Google Scholar
Hyers, D. H., Isac, G. and Rassias, Th. M., Stability of Functional Equations in Several Variables (Birkhauser, Boston, MA, 1998).10.1007/978-1-4612-1790-9Google Scholar
Hyers, D. H. and Ulam, S. M., ‘Approximately convex functions’, Proc. Amer. Math. Soc. 3 (1952), 821828.10.1090/S0002-9939-1952-0049962-5Google Scholar
Kannappan, Pl., Functional Equations and Inequalities with Applications (Springer, Heidelberg, 2009).10.1007/978-0-387-89492-8Google Scholar
Muldoon, Martin E., ‘Generalized hyperbolic functions, circulant matrices and functional equations’, Linear Algebra Appl. 406 (2005), 272284.10.1016/j.laa.2005.04.011Google Scholar
Schwaiger, J., ‘On generalized hyperbolic functions and their characterization of functional equations’, Aequationes Math. 43 (1992), 198210.10.1007/BF01835702Google Scholar
Ulam, S. M., Problems in Modern Mathematics (Wiley, New York, 1960), Ch. 6.Google Scholar