Skip to main content
×
×
Home

A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on

  • G.M. Kelly (a1)
Abstract

Many problems lead to the consideration of “algebras”, given by an object A of a category A together with “actions” TkAA on A of one or more endofunctors of A, subjected to equational axioms. Such problems include those of free monads and free monoids, of cocompleteness in categories of monads and of monoids, of orthogonal subcategories (= generalized sheaf-categories), of categories of continuous functors, and so on; apart from problems involving the algebras for their own sake.

Desirable properties of the category of algebras - existence of free ones, cocompleteness, existence of adjoints to algebraic functors - all follow if this category can be proved reflective in some well-behaved category: for which we choose a certain comma-category T/A

We show that the reflexion exists and is given as the colimit of a simple transfinite sequence, if A is cocomplete and the Tk preserve either colimits or unions of suitably-long chains of subobjects.

The article draws heavily on the work of earlier authors, unifies and simplifies this, and extends it to new problems. Moreover the reflectivity in T/A is stronger than any earlier result, and will be applied in forthcoming articles, in an enriched version, to the study of categories with structure.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves, and so on
      Available formats
      ×
Copyright
References
Hide All
[1]Adámek, Jiří, “Colimits of algebras revisited”, Bull. Austral. Math. Soc. 17 (1977), 433450.
[2]Barr, Michael, “Coequalizers and free triples”, Math. Z. 116 (1970), 307322.
[3]Barr, Michael, “Coequalizers and free triples, II” (Manuscript, McGill University, Montreal, 1979).
[4]Blackwell, R., “Some existence theorems in the theory of doctrines” (PhD thesis, University of New South Wales, Kensington, 1976).
[5]Bousfield, A.K., “Construction of factorization systems in categories”, J. Pure Appl. Algebra 9 (1977), 207220.
[6]Dubuc, Eduardo J., “Free monoids”, J. Algebra 29 (1974), 208228.
[7]Freyd, P.J. and Kelly, G.M., “Categories of continuous functors, I”, J. Pure Appl. Algebra 2 (1972), 169191; Erratum, J. Pure Appl. Algebra 4 (1974), 121.
[8]Gabriel, Peter, Ulmer, Friedrich, Lokal präsentierbare Kategorien (Lecture Notes in Mathematics, 221. Springer-Verlag, Berlin, Heidelberg, New York, 1971).
[9]Kelly, G. Max, “Quelques observations sur les démonstrations par récurrence transfinie en algèbre catégorique”, Cahiers Topologie Géom. Différentielle 16 (1975), 259263.
[10]Kelly, G.M. and Street, Ross, “Review of the elements of 2-categories”, Category Seminar, 75103 (Proc. Sydney Category Theory Seminar, 1972/1973. Lecture Notes in Mathematics, 420. Springer-Verlag, Berlin, Heidelberg, New York, 1974).
[11]Koubek, Václav, “Constructions of continuous functors” (Manuscript, Charles University, Prague, 1978).
[12]Koubek, Václav, Reiterman, Jan, “Automata and categories – input processes”, Mathematical foundations of computer science, 280286 (4th Symposium, Mariánské Laźně, 1975. Lecture Notes in Computer Science, 32. Springer-Verlag, Berlin, Heidelberg, New York, 1975).
[13]Koubek, Václav and Reiterman, Jan, “Categorical constructions of free algebras, colimits, and completions of partial algebras”, J. Pure Appl. Algebra 14 (1979), 195231.
[14]Kurková-Pohlová, Ve˘ra, Koubek, Václav, “When a generalized algebraic category is monadic”, Comment. Math. Univ. Carolin. 15 (1974), 577587.
[15]Reiterman, Jan., “A left adjoint construction related to free triples”, J. Pure Appl. Algebra 10 (1977), 5771.
[16]Schubert, Horst, Categories (translated by Gray, Eva. Springer-Verlag, Berlin, Heidelberg, New York, 1972).
[17]Wolff, Harvey, “Free monads and the orthogonal subcategory problem”, J. Pure Appl. Algebra 13 (1978), 233242.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Bulletin of the Australian Mathematical Society
  • ISSN: 0004-9727
  • EISSN: 1755-1633
  • URL: /core/journals/bulletin-of-the-australian-mathematical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed